

Broad Market Potential and Economic Feasibility of PSM4

Paul Kolesar CommScope March, 2013 IEEE P802.3bm "Next Gen 40G and 100G Optical Ethernet"

Purpose and Approach

- Purpose
 - To demonstrate
 - Broad Market Potential of 100GBASE-PSM4 proposals
 - Economic Feasibility of 100GBASE-PSM4 proposals
- Approach
 - Use input from
 - Customers that employ MPO-terminated single-mode cabling \rightarrow for B.M.P.
 - Several distributors & manufacturer quote of transceiver costs
 - Previous contributions to Next Gen SG and P802.3bm
 - Compare total channel costs (cabling + two PMDs)
 - Over channel length
 - Over time

 \rightarrow for E.F.

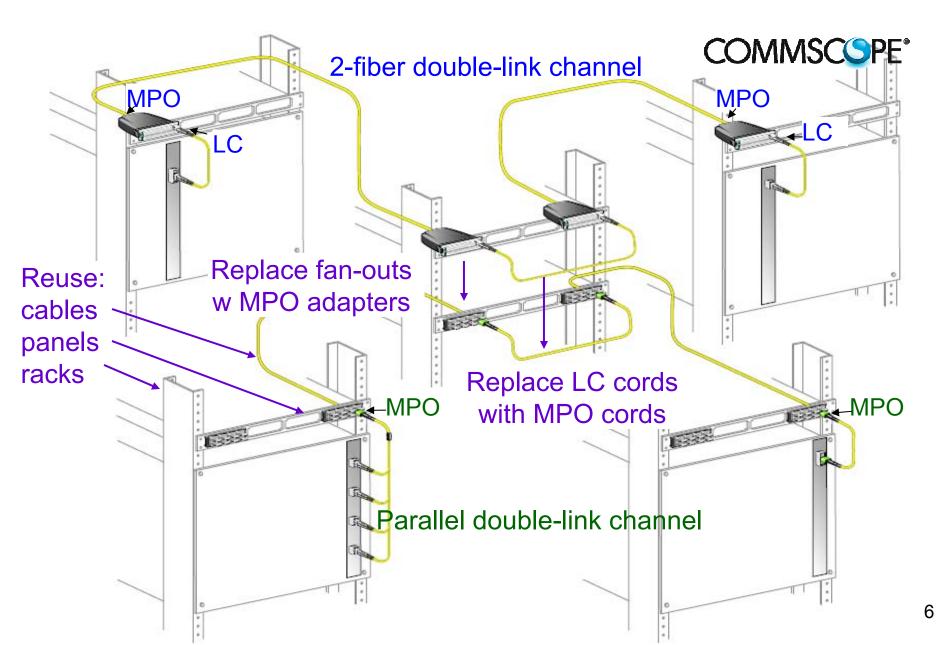
Broad Market Potential

Survey of CommScope Customers

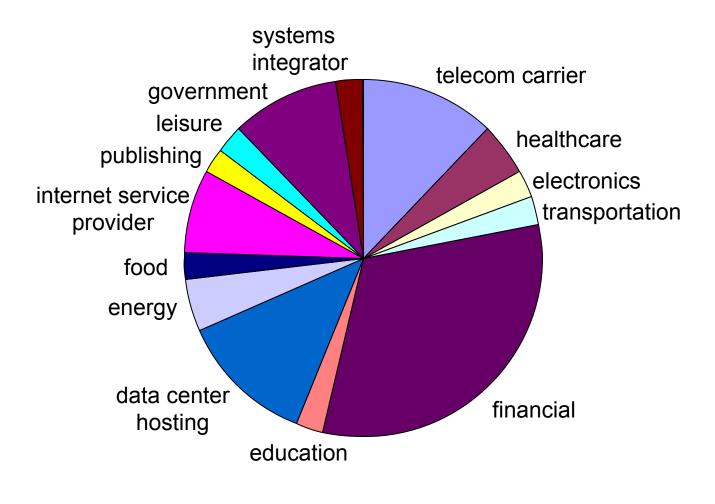
- A four-question survey was distributed
 - Via our sales personnel
 - Targeting customers with installed base of MPO-terminated cabling
- Questions designed to gauge customers'
 - Awareness of their cabling infrastructure and its capabilities
 - Willingness to deploy parallel single-mode solutions if at lower cost than 2-fiber solutions
 - Quantities of 12-fiber cabling subunits

Survey Questions

Q1) Are you aware that you have single-mode cabling terminated with MPO array connectors in your cabling plant?

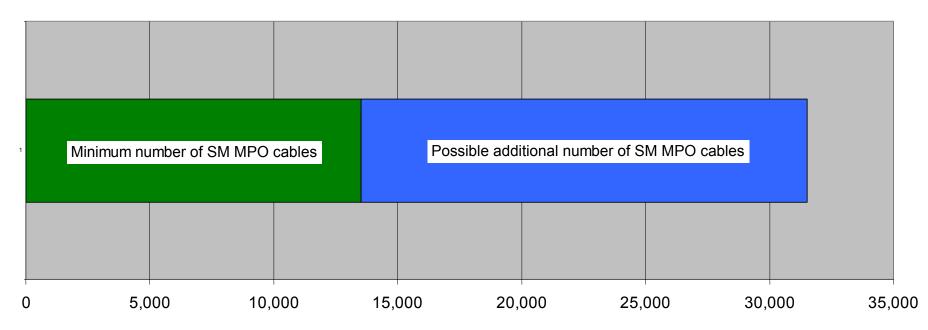

Q2) Are you aware that such cabling can be converted to support parallel optic applications by replacing the fan-outs with MPO adapters?

(See next slide for illustration of conversion.)

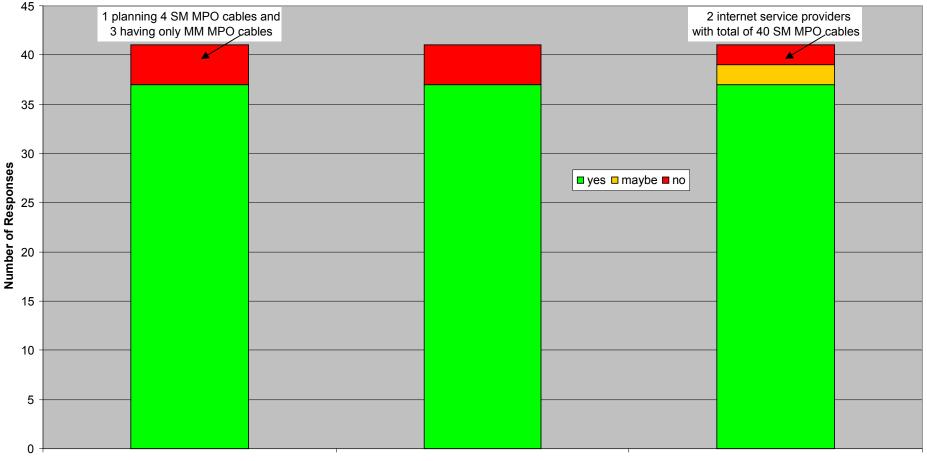

Q3) Would you convert your existing array-terminated single-mode cabling or deploy new array-terminated single-mode cabling to support future parallel optic applications if those applications were lower in total cost compared to 2-fiber single-mode applications?

Q4) What is the approximate number of MPO-terminated 12-fiber single-mode cables in your installation?

Converting 2-fiber to Parallel Cabling



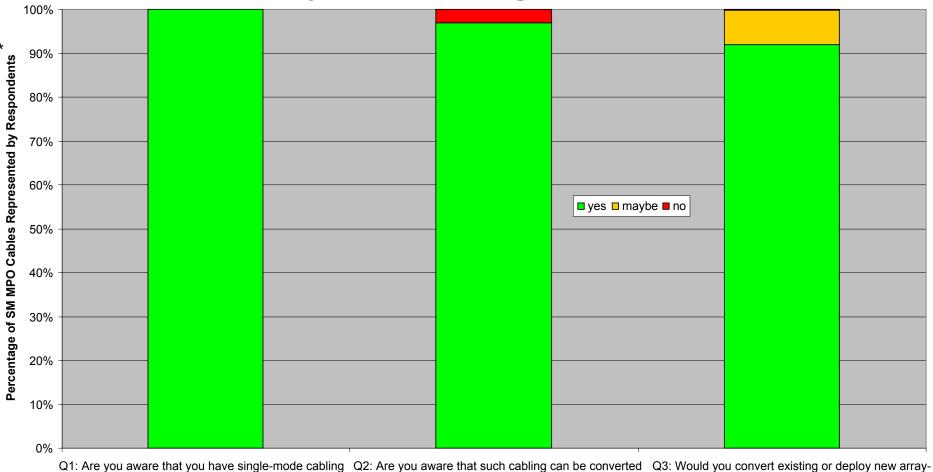
Survey Respondent Profile


41 respondents representing a diverse cross-section of businesses

Q4) Number of 12-fiber SM Cables

At least 13,500 12-fiber cables in survey. Up to 18,000 possible additional cables. Large upside uncertainty due to nature of some responses. "Hundreds" credited as 200 but may represent up to 1,000. "Thousands" credited as 2,000 but may represent up to 10,000.

Q1, Q2, Q3 by Number of Responses



Q1: Are you aware that you have single-mode cabling Q2: Are you aware that such cabling can be converted Q3: Would you convert existing or deploy new arrayterminated with MPO array connectors in your cabling to support parallel optic applications by replacing the plant? fan-outs with MPO adapters?

terminated single-mode cabling to support future parallel optic applications if those applications were lower in total cost compared to 2-fiber single-mode applications?

All questions received > 90% positive response rate

Q1, Q2, Q3 by Percentage of 12-fiber Cables

terminated with MPO array connectors in your cabling to support parallel optic applications by replacing the plant?

fan-outs with MPO adapters?

Q3: Would you convert existing or deploy new arrayterminated single-mode cabling to support future parallel optic applications if those applications were lower in total cost compared to 2-fiber single-mode applications?

Negative responses to Q3 represent < 1% of cables

Economic Feasibility

Input Cost Ratios

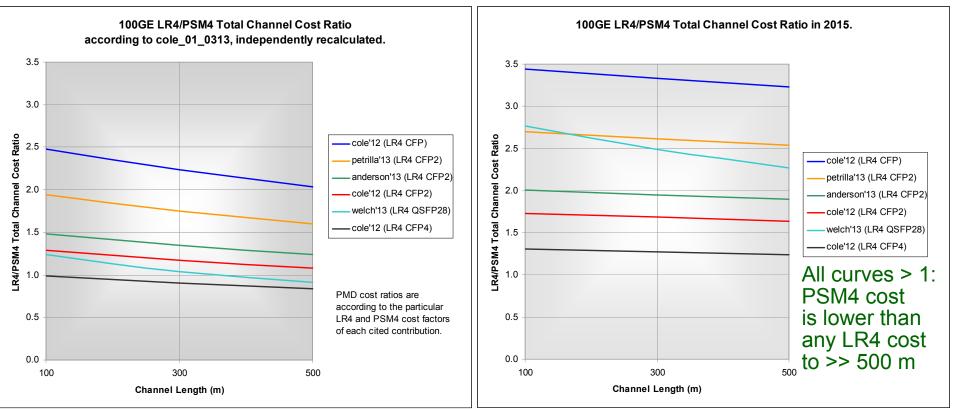
• Extracted from compilations in cole_01_0313

100GE PMD Relative Cost

Cabled Fiber Link Relative Cost

SR10 CXP = 1x	SR4	PSM4	LR4 Gen1	LR4 Gen2	LR4 Gen3		
Form-factor	CFP4/ QSFP28	CFP4/ QSFP28	CFP	CFP2/ CPAK	CFP4/ QSFP28		
petrilla_02a_0112 ¹	1.2x	3x to 4x					
nicholl_01_0112 ²		4x ³	14x	6.5x			
cole_02a_0312	1.2x	3x to 4x	16x	8x ⁴	5x to 6x		
anderson_01_0113 ⁵	<4x	4x ⁶		9.3x	Wow!!! LR4 will be		
petrilla_03a_0113 ⁵	1.1x	4x		12x	dirt cheap		
welch_01a _0113 ⁵		0.82x			3.5x		
1 Anderson and Petrilla numbers only4 Confirmed by actual CFP2 BOM cost2 Confirmed in welch_01a_01135 Confirmed in anderson_01_0213_smf3 Normalized to anderson_01_11116 Normalized to petrilla_02a_0112							
18-21 March 2013 6 Finisa							

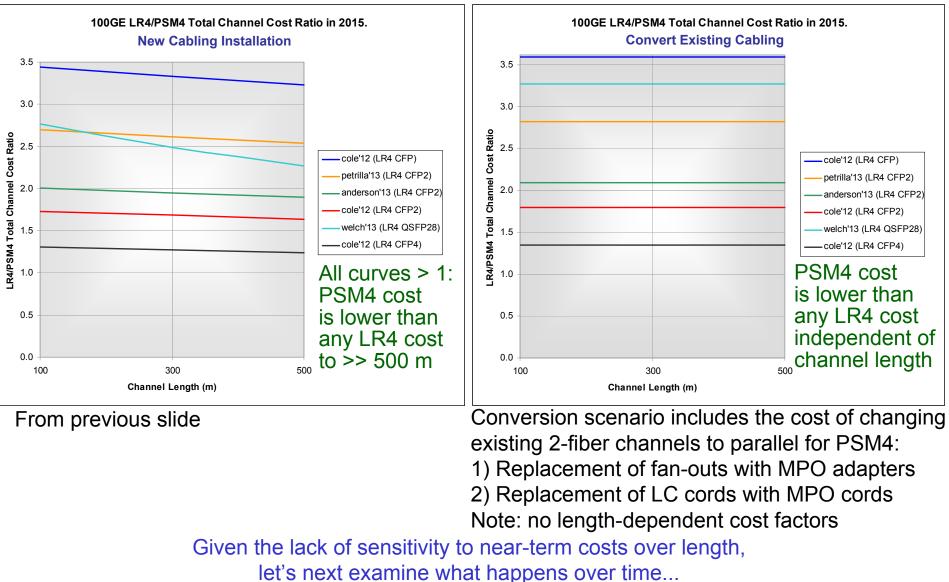
Channel Type	Double-Link (DL)			
Reach	100m	300m	500m	
DL 2f OS2 SMF	1.5	2	2.5	
DL 8f OS2 SMF	6	8	10	


Fiber connectivity cost ratios only (no transceivers) from <u>cole 01 0512</u> (Abbott, Cole, Coleman, Kolesar, Swanson)

7

18-21 March 2013

Finisar

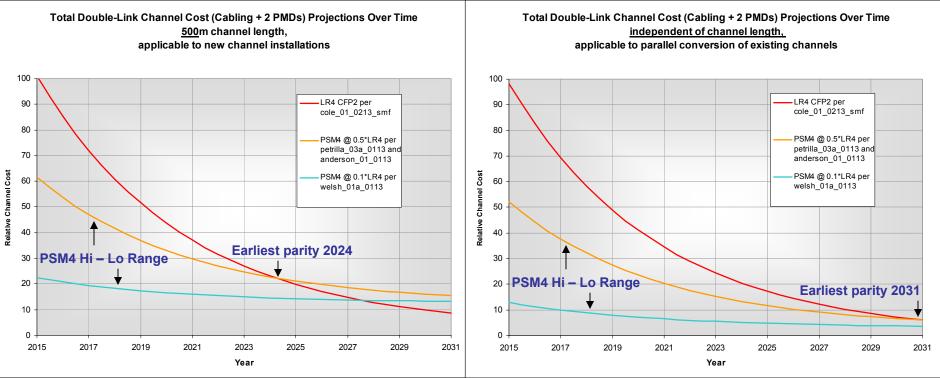

Total Double-link Channel Cost with New Cabling


Cole_01_0313 combines "direct" transceiver and "external" cabling costs. But direct sales are atypical in mature market. Cole_01_0313 adjusted by using cost at typical common point in supply chain for transceivers and cabling.

Double-link channels are examined because they have the highest cabling costs, thereby establishing a worst-case scenario for PSM4

Total Double-link Channel Cost: New vs Existing Cabling

Total Double-link Channel Cost Over Time: New Cabling



User installs only

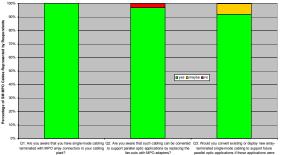
User installs S

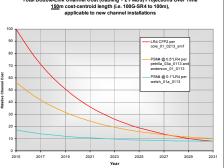
	Length Selection	Server-to-Switch Channels		Switch-to-Switch Channels		Channels	
		Post- 2012	Pre- 2008	Single Link	2:1 Mix Link	Double Link	
ly SM PMDs:	All Lengths	16	24	59	75	106	Here we examine relevant cost-centroid lengths
SR4 to 100m:	> 100m	n.a.	n.a.	150	150	150	from kolesar_01b_0512
	> 150m	n.a.	n.a.	200	200	200	

Total Double-link Channel Cost Over Time: 500 m New Cabling vs. Existing Cabling

Using historic PMD cost decline factor, we see that while cabling costs do set a higher floor under the cost of PSM4 channels, it will take more than a decade for this to cause parity for the highest PSM4 PMD cost estimates, even at 500 m channel length.

At the more relevant cost-parity length of 150 m shown on previous slide, that crossover is pushed out another three years, and for converted cabling another seven years independent of channel length.


Summary and Closing Perspectives


- Survey clearly demonstrates customers' willingness to deploy parallel SM solutions if lower in cost
 - Supports Broad Market Potential of PSM4

- The cost structure of 100G-PSM4 channels will be lower than 100G-LR4 channels for more than a decade
 - Supports long-term Economic Feasibility of PSM4

- Standardizing PSM4 will
 - endorse the simplest approach with undisputed Technical Feasibility*
 - accelerate growth of 100GE deployments
 - broaden the Ethernet market overall
 - seed the cabling infrastructure needed for higher data rates

*January's Technical Feasibility poll Y: 62, N: 0.

Q & A