500 m SMF PSM4 Baseline Proposal Update

Jon Anderson, Oclaro
John Petrilla, Avago Technologies
Tom Palkert, Luxtera

IEEE P802.3bm 40 Gb/s \& 100 Gb/s Optical Ethernet Task Force Victoria, BC, Canada, May 13-17, 2013

Supporters

John Abbott, Corning
Chris Bergey, Luxtera
Dave Brown, Semtech GPG Canada
Mark Bugg, Molex
Patrick Casher, Molex
Doug Coleman, Corning
David Cunningham, Avago Technologies
Kiyo Hiramoto, Oclaro
Jack Jewell, CommScope
Paul Kolesar, CommScope
Greg LeCheminant, Agilent Technologies
David Lewis, JDSU
Sharon Lutz, US Conec
Beck Mason, JDSU
Randy Perrie, OneChip Photonics
Rick Pimpinella, Panduit
Scott Sommers, Molex
Steven Swanson, Corning
Andy Weirich, OneChip Photonics
Brian Welch, Luxtera
Scott Kipp, Brocade
Tom Issenhuth, Microsoft
Christophe Metivier, Arista
Oren Sela, Mellanox
David Warren, HP Networking

Introduction

- This presentation provides updates to the PSM4 baseline specification proposal given in anderson_01a_0313_optx for a retimed PMD to address the P802.3bm objective:

Define a $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation up to at least 500 m of SMF.

- These baseline updates include:
- Correction to TX OAM analytic expression and Figure 1 to cover the case when TDP is less than 0.8 dB
- Maximum discrete reflectance confirmed to be -35 dB per petrilla_02_0513_optx
- Tx Optical Return Loss tolerance is adjusted to -7.94 dB , as derived for 12dB ORL at Rx and 4 in-line connectors at 35dB ORL each (per upper-bound analysis)
- This baseline specification is the basis for the P802.3bm Editor's draft PSM4 Clause 86 provided in 8023bm-96_PSM4_01.pdf
- This baseline specification is proposed for adoption by P802.3bm Task Force for fulfilling the 500 m SMF objective.

100GBASE- ?R4 Illustrative link power budget

Parameter	Unit	Proposed 100GBASE-?R4 500m	
Power budget (at max TDP)	dB	7.06	
Operating distance	km	0.50	
Maximum fiber loss	$\mathrm{dB} / \mathrm{km}$	0.50	Ref. kolesar_02_0313_optx
Optical connection and splice loss	dB	3.0	
Channel insertion loss (max) a	dB	3.26	Transmitter and Receiver module connectors are at -12dB. In-line connectors confirmed to be -35 dB; sensitivity to reflectance performance should be equivalent to or better than 10GBASE-LR.
Channel insertion loss (min)	dB	0	
Maximum discrete reflectance	dB	-35	
Allocation for penalties (at max TDP)			
Additional insertion loss allowed	dB	dB	3.8

Note a: The maximum channel insertion loss is calculated using the specified operating distance and maximum optical fiber (for in-door/out-door plant specified in ANSI/TIA-568-C.3-2008 Optical Fiber Cabling Components Standard) attenuation loss of $0.50 \mathrm{~dB} / \mathrm{km}$ at 1310 nm plus allocation for connection and splice loss as specified.

Note b: Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.
anderson_01_0513_optx

100GBASE- ?R4 Transmit Characteristics

Parameter	Unit	Proposed 100GBASE-?R4 500m	Comment
Signaling rate, each lane (range)	GBd	25.78125 +/- 100 ppm	
Lane wavelengths (range)	nm	1295 to 1325	
Side-mode suppression ratio (SMSR)(min)	dB	30	
Total average launch power (max)	dBm	8.0	
Average launch power, each lane (max)	dBm	2.0	
Average launch power, each lane (min) ${ }^{\text {a }}$	dBm	-9.4	At ER = 10 dB
Optical Modulation Amplitude (OMA), each lane (max)	dBm	2.2	
Optical Modulation Amplitude (OMA), each lane (min)	dBm	See Note b	
Transmitter and dispersion penalty (TDP), each lane (max)	dB	3.8	

Note a: Average launch power, each lane (\min) is informative and not the principal indicator of signal strength.
A transmitter with launch power below this value cannot be compliant; however, a value above this value does not ensure compliance.
Note b: Trade-offs are available between minimum transmit OMA, center wavelength offset and TDP, as defined by Equation 1 and illustrated in Figure 1.

Equation 1: 100GBASE- ?R4 minimum transmit OMA as a function of 1310 nm center wavelength offset and TDP

TX OMA $\geq \operatorname{MAX}\left(-8.65+(\Delta \lambda)^{2} / 100,-8.05\right)+\operatorname{MAX}($ TDP, 0.8$) \mathrm{dBm}$
where $\Delta \lambda$ is center wavelength offset (in nm) from 1310 nm and TDP is in the range of 0.8 to 3.8 dB . This is illustrated in Figure 1 for both maximum TDP and for TDP $\leq 0.8 \mathrm{~dB}$.

Figure 1: 100GBASE- ?R4 minimum transmit OMA as a function of 1310 nm center wavelength offset and TDP

100GBASE- ?R4 Transmit Characteristics Cont.

Parameter	Unit	Proposed 100GBASE-?R4 500m	Comment

Note c: Transmitter reflectance is defined looking into the transmitter.

100GBASE- ?R4 Receive Characteristics

Parameter	Unit	Proposed 100GBASE-?R4 500m	Comment
Signaling rate, each lane (range)	GBd	25.78125 +/-100 ppm	
Lane wavelengths (range)	nm	1295 to 1325	
Damage threshold ${ }^{\text {a }}$	dBm	3.0	
Average receive power, each lane (max)	dBm	2.0	
Average receive power, each lane (min) ${ }^{\text {b }}$	dBm	-12.66	At $\mathrm{ER}=10 \mathrm{~dB}$
Receive power, each lane (OMA) (max)	dBm	2.2	
Receiver reflectance (max)	dB	-12	
Receiver sensitivity at target BER (OMA), each lane (max) ${ }^{\text {c }}$	dBm	$\begin{gathered} \text { See Note d } \\ (\mathrm{Q}=3.8905,5 \mathrm{E}-5 \mathrm{BER}) \end{gathered}$	KR4 FEC corrects 100GBASEnR4 BER to $\leq 1 \mathrm{E}-12$

Note a: The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

Note b: Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

Note c: Receiver sensitivity (OMA), each lane (max) is informative.
Note d: Maximum receiver sensitivity may exhibit a wavelength dependency defined by Equation 2 and illustrated in Figure 2.
anderson_01_0513_optx

Equation 2: 100GBASE- ?R4 maximum receiver sensitivity at target BER (OMA) as a function of 1310 nm center wavelength offset

RX SENS (OMA) $=\operatorname{MAX}\left(-11.89+(\Delta \lambda)^{2} / 100,-11.4\right)$,
where $\Delta \lambda$ is center wavelength offset (in nm) from 1310 nm .

Figure 2: 100GBASE- ?R4 maximum receiver sensitivity at target BER (OMA) as a function of 1310 nm center wavelength offset

anderson_01_0513_optx

100GBASE- ?R4 Receive Characteristics Cont.

Parameter	Unit	Proposed 100GBASE-nR4 500m	Comment

Note d: Measured with conformance test signal at TP3 (see 87.8.11) for $B E R=5 \mathrm{E}-5$.
Note e: Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Summary \& Next Steps

- An updated PSM4 baseline specification proposal for the 500 m SMF objective 100GBASE-?R4 has been presented.
- This baseline specification is proposed for adoption by P802.3bm Task Force for fulfilling the 500 m SMF objective.

End of Presentation

Thanks!

