

100G PMD Cost Comparison from a Free Space Optical Platform

IEEE Interim Meeting Victoria, BC Canada May 14-17, 2013 Osa Mok & Bill Lee

Supporters:

Tekming Shen - Huawei Xueyan Zheng - Huawei

Outline

- We compare the cost of different 100G PMDs from a free space optics perspective.
- We analyze the current 40G cost, project the 100G cost, and estimate the total link cost (module + fiber link).
- We conclude that CWDM is the most cost effective 100G PMD for the >500M objective.

40G PMD Cost Structure

- We are a producer of the three PMDs and have solid cost data.
- Projected BOM cost at end of 2013
- SR4 cost as the baseline = 1.00
- SR4 w/850nm VCSELs, LR4 w/1310nm uncooled CWDM DFBs, PSM4 w/ 1310nm FPs

40G QSFP+	SR4 MMF	CWDM LR4	PSM4 >500M
Laser/LD driver	1.00	4.00	2.00
PIN/TIA	1.00	1.54	1.54
Optical Components	1.00	16.00	12.00
TOSA/ROSA Yield Loss	1.00	5.00	4.00
ICs (MCU etc.)	1.00	2.00	2.00
PCBA/Housing	<u>1.00</u>	<u>1.50</u>	<u>1.50</u>
Total	1.00	5.08	3.69

Cost Increase from 40G to 100G

- Assumed straight line increase on lasers/detectors and LD/TIAs. (current market cost >4X, at maturity 2.5X is reasonable)
- Optical components largely stay the same for 40 and 100G.
- Yield assumption calculated based on the % component cost increase
- Quad CDRs assumed in all parts. (CDRs not needed in 40G QSFP+)

Component	% Increase 40G to 100G	
Lasers	250%	
Detectors	250%	
TIAs	250%	
Optical components	110%	C
Yield Loss	158%	f
Laser Drivers	250%	
ICs	NA 🖊	
PCBA/Housing	150%	

CDRs needed for 100G, not 40G

100G PMD Cost Structure

- Estimated 100G cost based on the Cost Increase formula
- SR4 cost as the baseline = 1.00
- SR4 w/850nm VCSELs, CWDM w/1310nm uncooled DMLs, PSM w/ 1310nm FPs/VCSELs

100G QSFP28	SR4 MMF	CWDM >500M	PSM >500M
Laser/LD driver	1.00	4.00	2.00
PIN/TIA	1.00	1.54	1.54
Optical Components	1.00	16.00	12.00
TOSA/ROSA Yield Loss	1.00	5.00	4.00
ICs (CDR, MCU, etc)	1.00	1.25	1.25
PCBA/Housing	<u>1.00</u>	<u>1.50</u>	<u>1.50</u>
Total	1.00	3.10	2.30

PMD Cost Only. Need to add Fiber Link cost.

100G Total Link Cost

Channel Type	Link Cost Ratio		
Reach	100m	500m	2km
DL 2f SMF	1.5	2.5	6
DL 8f MMF	6	NA	NA
DL 8f SMF	6	10	24

(Cole_01a_0512 Cabled Fiber Link Relative Cost)

(2 PMDs + Fiber Link Cost, SR4 = 1.0)

100G QSFP28	100M	500M	2000M
SR4 MMF	1.0	NA	NA
CWDM	1.4	1.5	1.8
PSM 4	1.5	1.9	3.3

Power Consumption Estimate

	100G CWDM 100G LWDM		Comments	
Lane Count	4	4		
Signal Rate/Lane	25.78GBd	25.78GBd		
CDR	200mW/Lane	200mW/Lane	Sample in Q3 2013	
TEC	Not Req'd	350mW/Lane		
Driver	400mW/Lane	400mW/Lane	Sample in Q4 2013	
TIA	145mW/Lane	145mW/Lane		
DM-DML	75mW/Lane	51mW/Lane		
XCVR Total	~3500 mW	~ 5000 mW		
Form Factor	QSFP28		<3.5W	
	CFP4	CFP4	<6.0W	

- Tight wavelength for LWDM needs an efficient temp control, adding higher cost for TEC, packaging, additional ICs and components.
- By eliminating TEC, CWDM LR4 can be implemented in a QSFP28 form factor yielding additional density and power benefit.

CWDM is the most cost effective solution for 100G

- 100G CWDM is the most cost effective SMF PMD for data center links.
- Even for 100M links, CWDM is a very attractive alternative to SR4 MMF when inventory and deployment cost are considered.
- Most structured cable plants for the newly built DCs are based on SMF fiber infrastructure.
- Very large data centers and ISPs request ~2km links. (palkert_01a_0313)
- For field terminations and cable management, SMF is substantially better than parallel fibers.