100G Parallel SMF Skew

John Petrilla: Avago Technologies May 2013

Contributors

Contributors

Pete Anslow Ciena Fibre Characteristics Tool

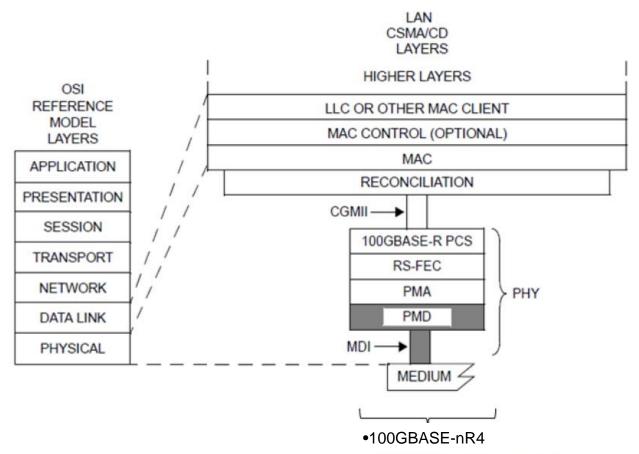
Paul Kolesar CommScope Skew Calculator Tool

100G Parallel SMF Skew

Presentation Objectives:

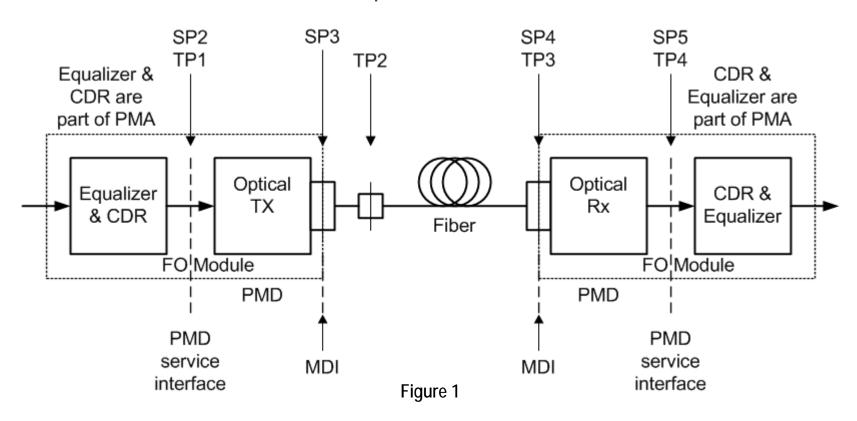
•Provide results from an analysis of lane skew expected for 500 m of parallel SMF

Conclusion:


•A 500 m parallel SMF implementations fits within the skew constraints of 802.3ba and 802.3bj

References

Fibre_characteristics_V_4_0_draft_2.xls (Pete Anslow author) Kolesar_02_0508.xls (Skew model, Paul Kolesar author)


802.3 clause 80

Proposed position in 802.3 architecture

CGMII = 100 Gb/s MEDIA INDEPENDENT INTERFACE LLC = LOGICAL LINK CONTROL MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER
PHY = PHYSICAL LAYER DEVICE
PMA = PHYSICAL MEDIUM ATTACHMENT
PMD = PHYSICAL MEDIUM DEPENDENT
RS-FEC = REED-SOLOMON FORWARD ERROR
CORRECTION

Fiber Optic Links Interfaces

- •Figure 1 identifies skew points, SP3 and SP4, relevant to optical interfaces.
- •From 802.3 Cl 80.5, the skew at SP3 shall be less than 54 ns and the skew variation at SP3 shall be less than 600 ps.
- From 802.3 CI 80.5, the skew at SP4 shall be less than 134 ns and the skew variation at SP4 shall be less than 3400 ps.
- •The inclusion of RS-FEC (802.3bj Clause 91) does not change the maximum limits at SP3 and SP4 that were defined in 803.3ba Clause 80.5, Tables 80-4 and 80-5.
- •Acceptable skew contributions from the optical cable are defined by the differences between SP4 and SP3 constraints.
- •Optical cable lane skew must be less than 80 ns and lane skew variation must be less than 2800 ps.

From Fibre_characteristics_V_4_0_draft_2.xls

Parameter	Value	Unit	
Aggregate bit rate after PCS coding	103.125	GBd	
Link length	0.5	km	
Fibre type (G.652.A&B (B1.1) or G.652.C&D (B1.3))	G.652.A&B	-	
Minimum transmitter wavelength	1295	nm	
Maximum transmitter wavelength	1325	nm	
Maximum zero dispersion wavelength (I ₀ max)	1324	nm	
Minimum zero dispersion wavelength (I ₀ min)	1300	nm	
Maximum fibre dispersion slope	0.093	ps/(nm^2.km)	
Maximum fiber loss for any wavelength	0.22	dB	
Maximum dispersion for any wavelength	1.13	ps/nm	
Minimum dispersion for any wavelength	-1.39	ps/nm	
Maximum optical skew	20.0	ps	
Maximum optical skew variation	40.0	ps	

[•]Using a modified version of the fiber model tool found at http://www.ieee802.org/3/ba/public/tools/Fibre_characteristics_V_3_0.xls with entries relevant to a 500 m, 100G, parallel SMF application, due to the center wavelength range (1295 nm to 1325 nm), the max calculated skew is 20 ps (0.04 ps/m) and the max calculated skew variation is 40 ps (0.08 ps/m).

[•]Here the skew variation assumes that the fastest and slowest lanes in a parallel application can swap over. Hence the max skew variation can be twice the max skew.

From Kolesar_02_0508.xls

SMF cable skew factors				Skew (ps/m)
numerical aperture (NA) difference	NA, max 0.141	NA, min 0.139	cladding IoR, nom 1.457	0.90
strand length difference	Differential length factor 0.0050	Propagation delay (ps/m) 5000		25.0
cabling stress difference	Stress, max (kpsi) 50	Stress, min (kpsi) 0	stress-refraction coef. 2.61E-05	4.4
total maximum skew at 1310 nm				
total maximum skew variation				4.38

- •Using kolesar_02_0508 found at http://www.ieee802.org/3/ba/public/may08/kolesar_02_0508.xls with entries relevant to a 500 m, 100G, parallel SMF application, it can be seen that skew is dominated by differential lane length.
 - •Skew due to DMD difference isn't applicable for SMF
 - •Skew due to relative group delay is redundant addressed in Fibre_characteristics_V_4_0_draft_2.xls
- •For 500 m of parallel SMF,
 - •max calculated skew is 20 ps + 500 m x 29.83 ps/m = 15.16 ns
 - •max calculated skew variation is 40 + 500 m x 4.38 ps/m = 2230 ps
- Compared to clause 80 skew constraints
 - •max calculated skew variation is 2230 ps (vs a max constraint of 2800 ps)
 - •max calculated skew is 14.92 ns (vs a max constraint of 80 ns)
- •The delta between the max calculated skew and the max acceptable skew (80 -15.16) ns may permit an additional lane difference of approximately 13 m assuming a propagation delay of 5 ns/m.