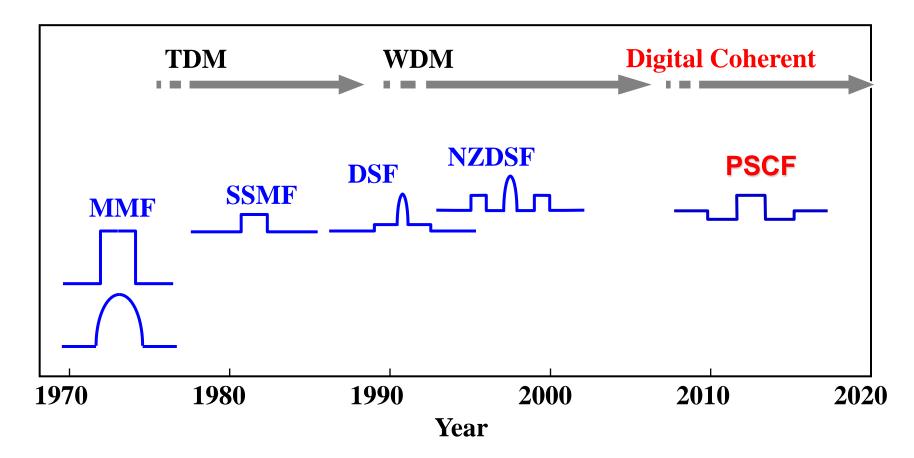


Optical Fiber Cable Design & Reliability

Patrick Van Vickle, Sumitomo Electric Lightwave


Outline

- Fiber & Cable Design
- Fiber & Cable Reliability
 - Causes & Likelihood of Failure
 - Fiber Reliability
 - Optical
 - Mechanical
 - Cable Standards
 - Cable Reliability
 - Mechanical Damage
 - Environmental Damage
 - Hardware
 - P-Clamps
- Summary

Fiber Design History

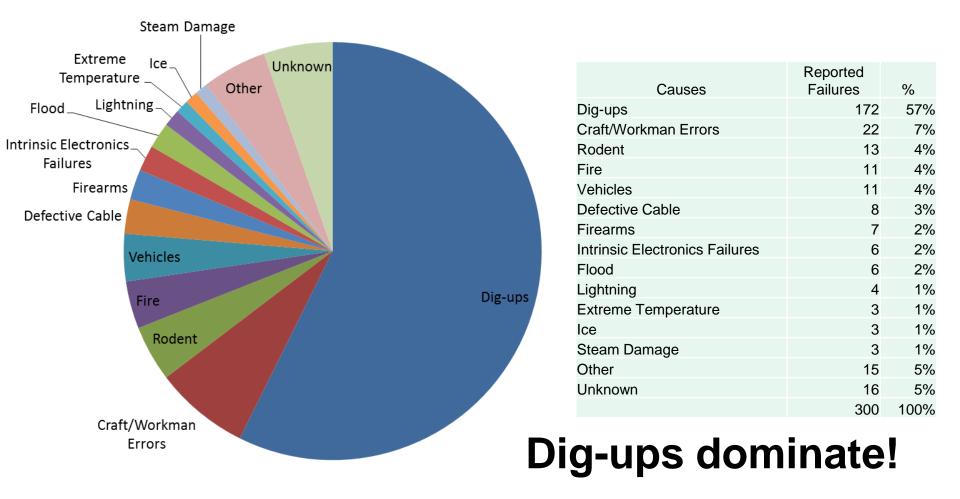
• Fiber design and transmission technology have collaboratively evolved to increase bandwidth.



Fiber by Application

Indoor	мм	ISO/IEC OM3/4
Campus		ITU G.657
Metro	SM	ITU G.652
► Long Haul (10G/40G)		ITU G.655
		ITU G.656
Long Haul (100G/400G)		ITU G.654

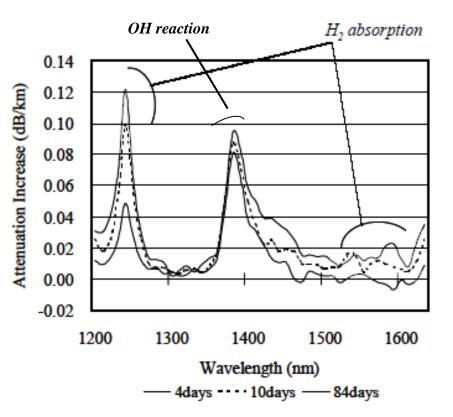
Typical Loose Tube Cable Design



Fiber & Cable Failure

Studies of Historical Cable/Fiber Failure

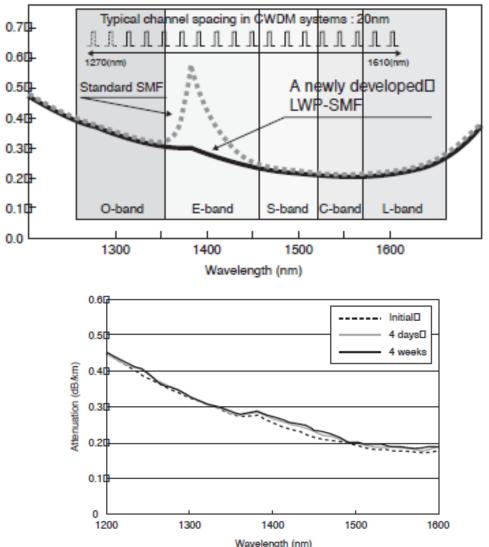
Ref: V. Hou, "Update on Interim Results of Fiber Optic System Field Failure Analysis", NFOEC Proceedings Vol. 1, p. 539-545, (1991)


Intrinsic Cable Failure

- Cablers have very little influence on the majority of causes of cable field failures.
- While a small percentage, we can examine the "intrinsic" cable failures and what is done to prevent them.
- Some questions about intrinsic failures:
 - Does the glass inside the cable degrade? Break?
 - What are the cables expected to withstand through their lifecycle?
 - What standards are applicable for cable and fiber?
 - What tests are done to ensure the cable design is robust?

Fiber Lifetime - Optical

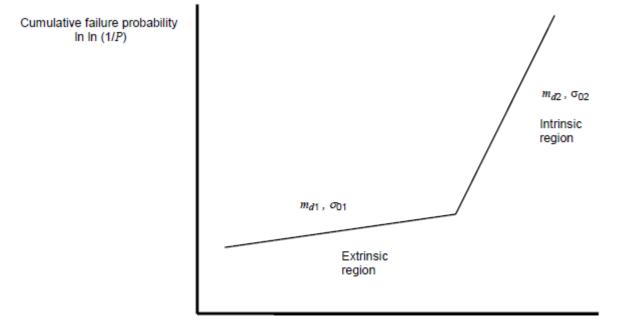
- Early fibers (ITU G.652 A/B) were susceptible to increased losses due to Hydrogen.
- The Hydrogen could come from the atmosphere or evolve out of materials in the cable.
- The losses at 1240nm, 1590nm and other wavelengths were due to interstitial Hydrogen (H₂) and were reversible.
- The losses at 1383nm were permanent and due to a reaction between the Hydrogen and defect sites in the glass forming OH.
- This lead to the introduction of "low water peak" fiber (ITU G.652 C/D).



Ref: M. Shimizu et. al, "Hydrogen Aging Tests for Optical Fibers", *IWCS Proceedings*, p. 219-223, (2001)

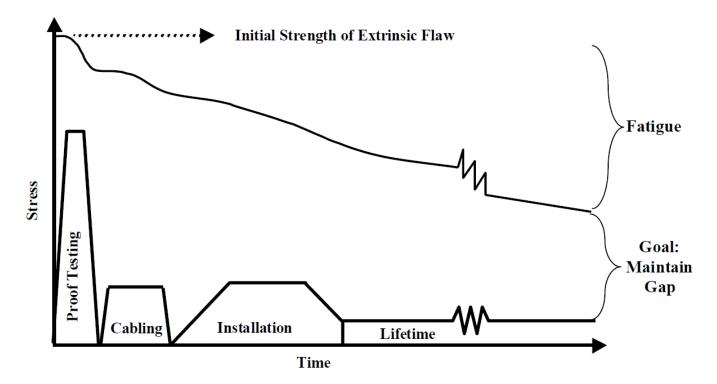
Fiber Lifetime - Optical

- "Low water peak" fiber (ITU G.652 C/D) is designed to prevent Hydrogen induced loss.
- Fiber is tested to IEC 60793-2-50
 C.3.1 which ensures that fiber has both low attenuation initially, but also is resistant to Hydrogen aging.
- This is important for CWDM systems that use wavelengths at or near 1383nm.
- The specification calls for 1383nm attenuation to remain equal to or below the attenuation from 1310nm to 1625nm.


Ref: F. Ohkubo et. al, "Low Water Peak Single-Mode Optical Fiber "PureBand" for Metro and Access Area Networks", SEI Whitepaper, (2001)

Attenuation (dB/km)

Fiber Lifetime - Mechanical


- Glass fiber's strength and reliability has been researched thoroughly.
- The causes of mechanical failure of glass can be broadly separated into two categories:
 - Extrinsic (flaws in the glass due to the manufacturing process, handling during installation, fiber stripping for connectorization, etc.)
 - Intrinsic (the strength of the glass itself absent of large flaws or defects)

Fiber Lifetime - Mechanical

- Fiber is proof tested at manufacture to "weed out" flaws in the extrinsic region.
- Install stress and long term stress of the glass is limited by standards to ensure the fiber lifetime.

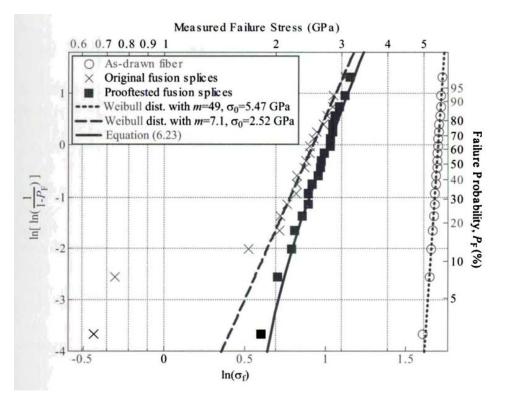
Ref: R. Castilone, et. al, "Extrinsic Strength Measurements and Associated Mechanical Reliability Modeling of Optical Fiber," NFOEC, (2000)

Fiber Lifetime – Stress Corrosion

IEC TR62048 – Power Law Theory

"Reliability is expressed as an expected lifetime or as an expected failure rate. The results **cannot be used for specifications** or for the comparison of the quality of different fibres."

$$t_f = \left\{ \left[\frac{\beta^{m_s}}{L} \ln \frac{1}{P} + (\sigma_p^n t_p)^{m_s} \right]^{\frac{1}{m_s}} - \sigma_p^n t_p \right\} \sigma_a^{-n}$$


The standards dictate a low long term stress to ensure a long lifetime at an acceptable failure probability.

	Applied stress	Failure probability			
>	as a % of proof test stress	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶
	10	2,56 × 10 ¹¹	2,14 × 10 ¹⁰	2,10 × 10 ⁹	2,10 × 10 ⁸
	15	7,70 × 10 ⁷	6,43 × 10 ⁶	6,31 × 10 ⁵	6,30 × 10 ⁴
	20	2,44 × 10 ⁵	2,04 × 10 ⁴	2,00 × 10 ³	2,00 × 10 ²
	25	2,82 × 10 ³	2,35 × 10 ²	2,31 × 10 ¹	2,30 × 10 ⁰
	30	7,35 × 10 ¹	6,13 × 10 ⁰	6,02 × 10 ⁻¹	6,01 × 10 ⁻²

Fiber Lifetime - Splices

- UNPROTECTED spliced fiber does have a lower strength than unspliced fiber.
- The splice acts as a flaw in the fiber.
- The strength of the spliced fiber is still high and is additionally protected by a splice sleeve to restore the strength of the splice.

Fiber (not Cable) Reliability Interpretation?

- The failure of the glass itself is probabilistic.
- The standards bodies explicitly state this **cannot** be a specified value because it's statistical.
- The statistics indicate that if installed correctly and under acceptable long term load the lifetime of the fiber is very long (>40 years).

• Where to focus next?

- Cable standards
- Cable design
- Cable testing to ensure robust performance against field incidents
- Hardware reliability

Cable Standards

- Historically Bellcore/Telcordia specifications, mainly influenced by the RBOCs, were the governing standards. (GR20)
- Telcordia GR20 in most cases now defers to the relevant industry specification (not its own specs).
 For cable this is ANSI/ICEA-640.
- RUS/RDUP has taken a similar approach, PE-90 now defers to ICEA 640.

📌 Telcordia		
Telcordia Te	erments for Optical optical Fiber Cable schologies Generic Requirements GR 20-CORE Issue 4, July 2013 Comments Requested (See Preface)	
Telcordia Technologies, in This document is available only only be started among the EL agreement and for copyright me usualinoticed distribution, down Lonned Exclusively to Sumitiono Ba	STAI OUTSIDE I	ANSI/ICEA S-87-640-2011 NDARD FOR OPTICAL FIBER PLANT COMMUNICATIONS CABLE January 17, 2012 Fifth Edition Published By d Cable Engineers Association, Inc. (ICEA) P.O. Box 1568 Carrollion, Georgia 30112, USA (770) 830-0369
	Approved June 7, 2011, b INSULATED CABLE ENG Approved January 17, 201 AMERICAN NATIONAL ST	INEERS ASSOCIATION, Inc. 2, by ANSI ASC C-8

Typical Cable Specifications

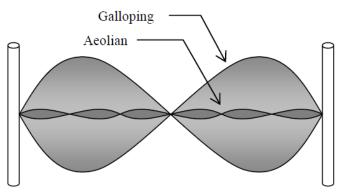
Install and Long Term Load specified to ensure fiber lifetime

Test Item	ICEA640/GR20 Requirement
Temperature Cycling	-40°C / +70°C (2 cycles)
Cable Aging (Accelerated)	+85°C / 7 days (2 TC cycles)
Tensile Strength	600lb install / 180lb residual
Compressive Strength	2.2 kN
Impact Resistance	4.4 N-m, 2 impacts, 3 locations
Cable Cycling Flexing	20x Cable OD / 25 Cycles
Cable Twist	±180°, 10 Cycles
Low/High Temperature Bend	20x Cable OD / Installation Temps
Water Penetration	1m water head / 1m cable

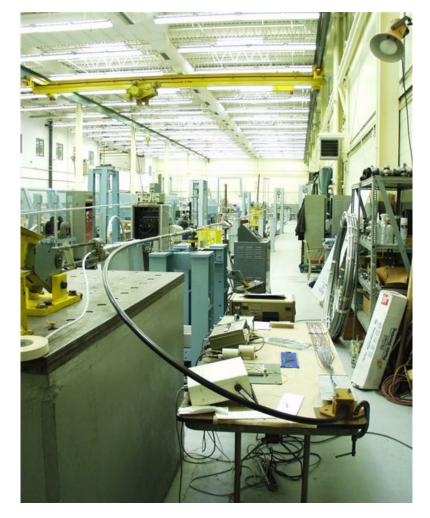
Cable & Hardware Reliability Tests

• Cable

- Mechanical Damage
 - Wind Loading
 - High Tensile Installation
 - Dig-ups
- Environmental Damage
 - Water Penetration
 - Freezing

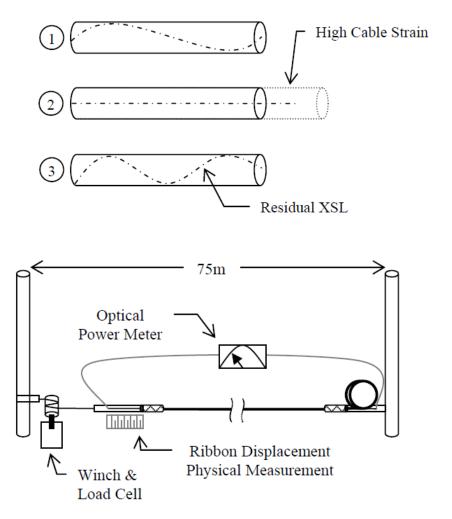

• Hardware

P-Clamps



DriTube Ribbon Design

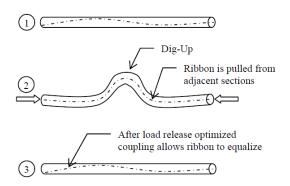
• Aeolian & Galloping Vibration (IEEE 1222)



High Strain Installation

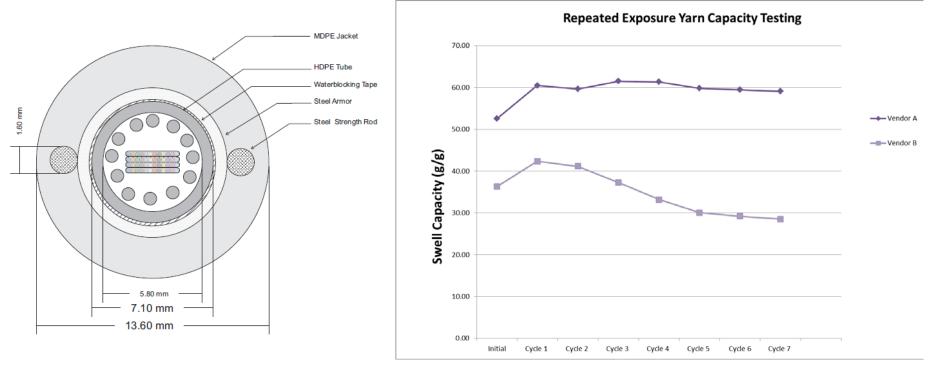
- In addition to standard tensile testing, internal testing examines how robust the cables are at extremes.
- No cable design can protect against all installation conditions (lack of 600lb limiting swivel, pulled in with a truck, etc.)

Ref: P. Van Vickle, et. al, "Central Tube Cable Ribbon Coupling", IWCS Proceedings, p. 498-503, (2003)


Cable Dig-Up

Ref: http://www.pagosadailypost.com/news/5022/Bad_Day_at_the_Piedra_Intersection/

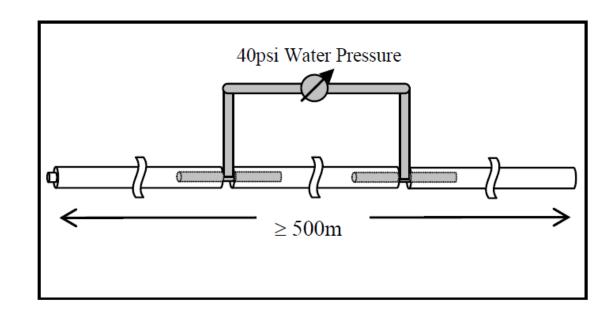
Ref: http://blog.level3.com



Ref: P. Van Vickle, et. al, "Central Tube Cable Ribbon Coupling", IWCS Proceedings, p. 177-181, (2008)

Dry Cable Water Penetration

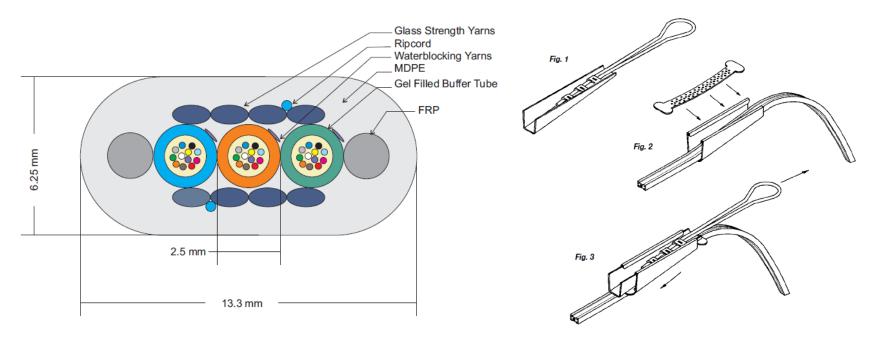
- Many open questions about water blocking methods, we first investigated:
 - Tapes too slow, very poor repeated swell capacity
 - Powders can wash down the tube, results in poor repeated swell capacity
 - Yarns very fast, depending on vendor can have very good long term results



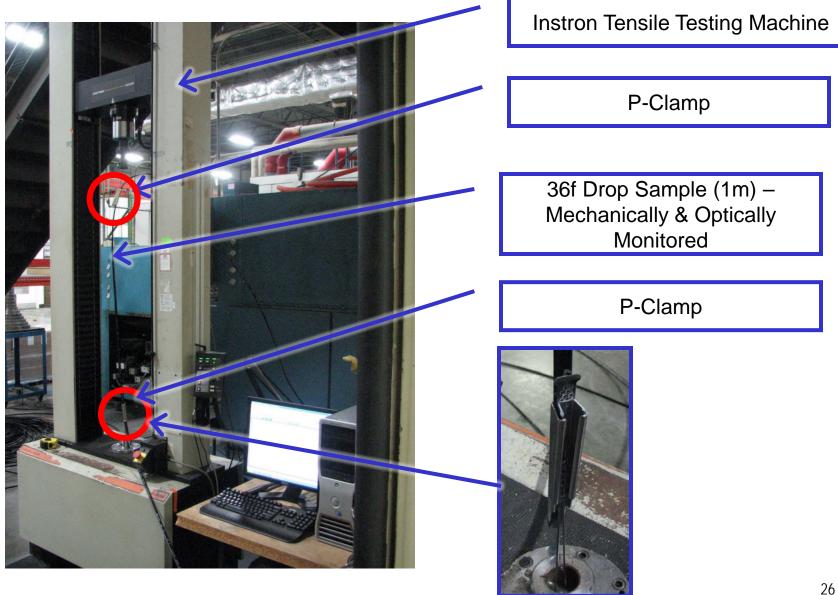
Ref: P. Van Vickle, "Innovative Dry Buffer tube Design for Central Tube ribbon Cable", NFOEC, p. 154-161, (2001)

High Pressure Water Resistance

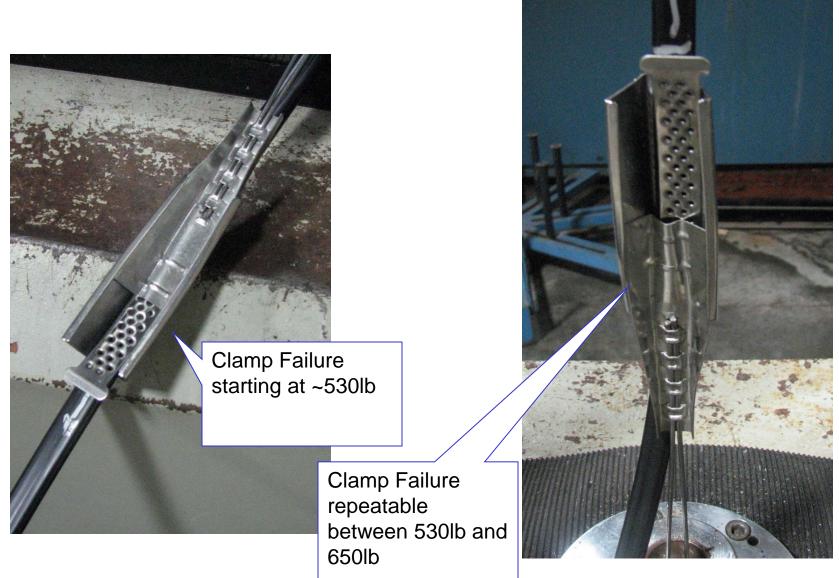
- High pressure water penetration, two locations, then -40°C / +70°C temperature cycling.
- Ensures if water does breach the jacket, the fiber is protected and functional.



Hardware Reliability


• High reliability drop cable design

- 36 fiber
- 250 ft span
- NESC Heavy ice load each year, 20 years
- Compatible with conventional copper drop hardware



Clamp Testing

Hardware Evaluation

Summary

- Fiber reliability is well established.
- Fiber and cable have long lifetimes if the install and service environment are nominal.
- Backhoes, lightning, rodents, car collisions with poles, etc. will govern the service life of cables.