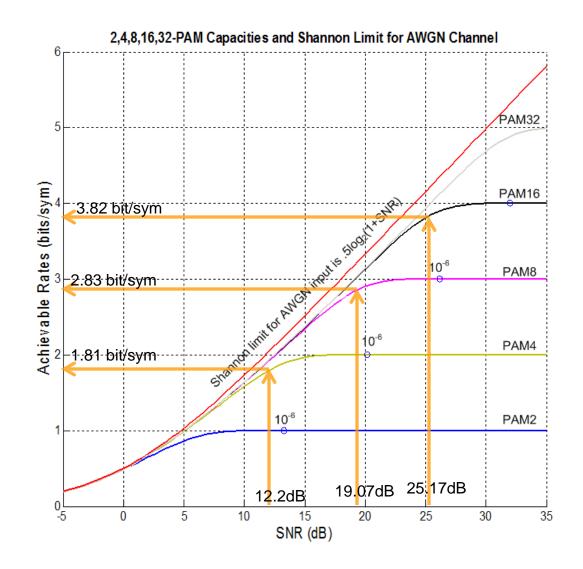
PAM-N Comparison

Vipul Bhatt – Cisco Sudeep Bhoja – Inphi Arash Farhood – Cortina Gary Nicholl -- Cisco

IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force, September 2012


Acknowledgment

 Thanks to David Lewis (JDSU) and Beck Mason (JDSU) for their advice and support.

Outline

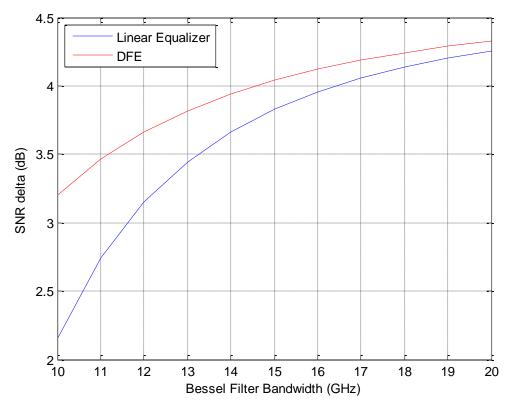
- PAM 8/12/16 Bandwidth and SNR tradeoffs
- Enhanced FEC: Benefits of Multilevel coding (MLC)
- 3.5 bits/symbol using 2D PAM constellations
- Optical Simulation model
- Link Simulations
- Summary


PAM Sweet Spots

The optimal choice of N in PAM-N depends on achievable SNR and bandwidth.

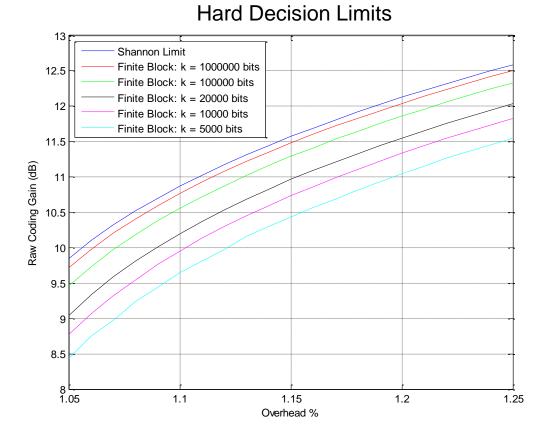
Ref: "Optimal Unipolar PAM Solutions for 100G SMF link from Channel Capacity Perspective" by A. Farhood, Sep 2012, 802.3bm

PAM-N SNR



- 802.3bj NRZ RS(528, 514, t = 7) supports input BER = 2.2 E-5 for 1E-15 output BER (5.8dB coding gain)
- 802.3bj PAM4 uses a higher overhead code

	Baud Rate	Bits Per Symbol	Required Slicer SNR for 2.2E-5 (dB)	Noise BW Penalty (dB)	Relative SNR delta with .bj RS (dB)*
PAM8	34.4G	3	25.2 (+0)	1.25	0
PAM12	29.5G	3.5	28.7 (+3.5)	0.58	2.83
PAM16	25.8G	4	31.1 (+5.9)	0	4.65


* The actual delta is smaller. These numbers are ignoring the bandwidth effect. See next page.

PAM8 vs. PAM16 Bandwidth effect

- Example: At 20 GHz bandwidth, the PAM8-PAM16 SNR difference shrinks from 4.65 dB to ~4.2 dB.
- SNR delta can be compensated by over clocking PAM16, and use the extra bits for a higher-gain FEC than 802.3bj.

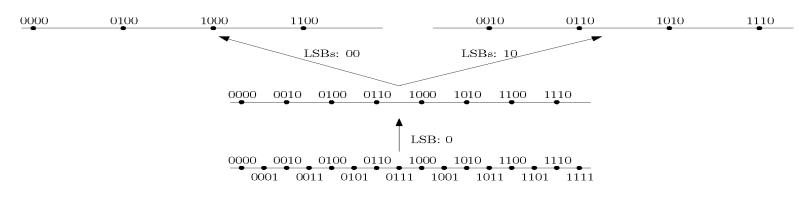
FEC Coding Gain at 1E-15 vs. Overhead

Hard decision limit is 12dB coding gain for 20% overhead (which is ~6.2dB higher coding gain than 802.3bj RS)

Coding Gain Tradeoff Table

		Required					Hamming			
Block	Block	Error	Raw input	Raw coding	Raw input	Raw coding	Sphere	Delta over		BCH Delta
Latency	Size	Correction	BER for 1E-18	gain for 1E-18	BER for 1E-15	gain for 1E-15	Packing Rate	100GE-LR4	BCH Rate	over 100GE-
(ns)	(bits)	(t)	output BER	o/p BER	output BER	o/p BER	(Gb/s)	rate	(Gb/s)	LR4 rate
41.62	4261	3	1.66E-08	4.0	9.26E-08	3.7	25.59	-0.72%	25.63	-0.61%
69.32	7098	5	4.22E-07	5.0	1.34E-06	4.6	25.60	-0.70%	25.63	-0.60%
4.80	526	5	5.70E-06	6.0	1.80E-05	5.7	27.42	6.37%	28.06	8.83%
15.14	1593	6	5.70E-06	6.0	1.53E-05	5.6	26.30	2.01%	26.49	2.74%
35.97	3724	7	5.70E-06	6.0	1.36E-05	5.5	25.88	0.40%	25.98	0.76%
4.82	535	6	1.70E-05	6.5	4.56E-05	6.1	27.72	7.53%	28.60	10.93%
11.71	1249	7	1.70E-05	6.5	4.04E-05	6.1	26.67	3.45%	27.06	4.96%
23.39	2451	8	1.70E-05	6.5	3.68E-05	6.0	26.19	1.59%	26.43	2.50%
40.98	4253	9	1.70E-05	6.5	3.42E-05	6.0	25.95	0.64%	26.11	1.27%
65.34	6742	10	1.70E-05	6.5	3.21E-05	6.0	25.80	0.06%	25.89	0.42%
8.29	906	8	4.60E-05	7.0	9.96E-05	6.6	27.32	5.97%	27.85	8.02%
14.71	1572	9	4.60E-05	7.0	9.24E-05	6.5	26.72	3.63%	27.10	5.10%
49.78	5176	12	4.60E-05	7.0	7.93E-05	6.5	25.99	0.82%	26.18	1.55%
14.29	1543	11	1.10E-04	7.5	1.98E-04	7.0	27.00	4.73%	27.55	6.87%
20.28	2165	12	1.10E-04	7.5	1.90E-04	7.0	26.68	3.50%	27.20	5.50%
36.02	3789	14	1.10E-04	7.5	1.77E-04	6.9	26.30	2.01%	26.57	3.05%
15.63	1701	14	2.45E-04	8.0	3.95E-04	7.5	27.21	5.56%	27.92	8.29%
24.82	2659	16	2.45E-04	8.0	3.75E-04	7.4	26.78	3.88%	27.37	6.15%
36.20	3839	18	2.45E-04	8.0	3.61E-04	7.4	26.51	2.82%	26.90	4.36%
23.61	2564	20	5.00E-04	8.5	7.13E-04	7.9	27.15	5.30%	28.01	8.66%
31.09	3346	22	5.00E-04	8.5	6.94E-04	7.9	26.90	4.35%	27.57	6.92%
44.00	4691	25	5.00E-04	8.5	6.73E-04	7.9	26.65	3.38%	27.28	5.82%
36.50	3965	31	1.00E-03	9.0	1.29E-03	8.4	27.16	5.34%	28.02	8.68%

• Rates here are calculated based on 65b/64b transcoding. Rates can further improve by 1.15% if we change the transcoding to 257b/256b.


• S. Bhoja, M. Gustlin, "FEC Triple Tradeoffs & 100GCU SG Objectives", IEEE 802.3 100 Gb/s Backplane and Cable Study Group, March '11

Coded Modulation

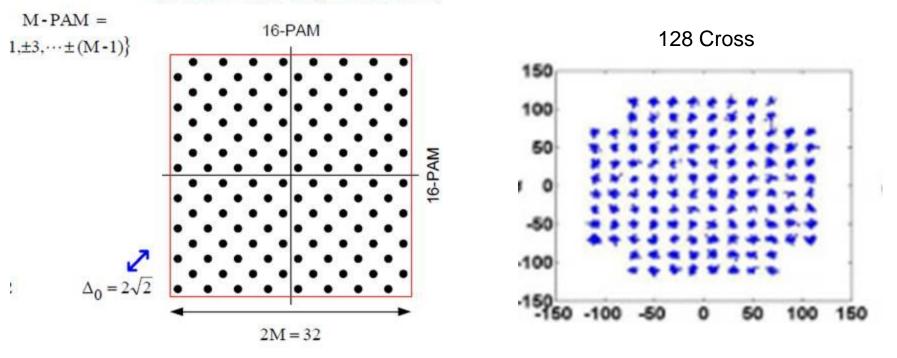
- Over clocked PAM12 or PAM16 with stronger FEC compared to 802.3bj RS is under investigation
- Coded Modulation can combine mapping with FEC to close the link budget.

Example 1: Multi-Level Coding (MLC) on PAM-16

- Code the two LSBs and induce 4-PAM from 16-PAM
- Hierarchical partition of constellation shown below for LSB=0; analogous partition for LSB=1

Coded Modulation Example 1: MLC, 16-PAM

Consider each bit a sub-channel


- Assuming PAM16 SNR=25.2dB, the capacity for Sub-Channel4 (ie LSB) is 0.8335 bits per symbol and Sub-Channel3 is 0.9997 bits per symbol.
- ➢With our low latency requirement, it is very hard to approach channel capacity. If we back-off 3dB from the limit, then Sub-Channel4 can send 0.6089bit per symbol and Sub-Channel3 can send 0.9868 bits per symbol.
- The overall rate is (1+1+0.9868+0.6089)/4=0.8989. The baud rate needs to be expanded by 1/0.8989. So the 25GHz transcended rate is increased to 28GHz. This is equivalent to 12% OH.
 - Latency (ns) will increase by a factor of 4 due to lower throughput

Coded Modulation Example 2: Mapping/2D constellation

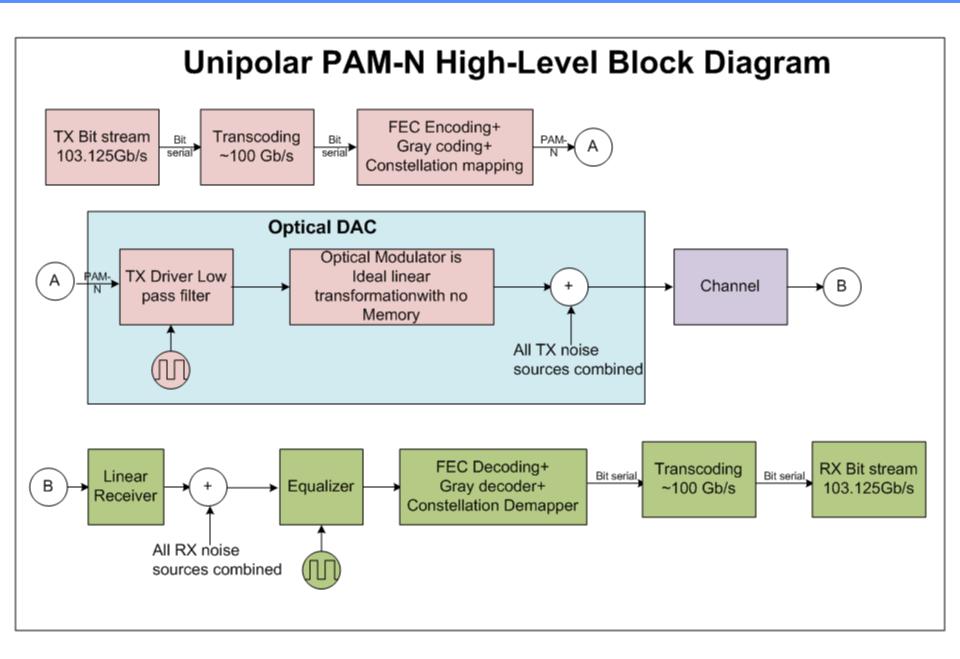
- 128 constellation points over 2 symbol periods allows for integer bit mapping
- Intermediate option to PAM8 and PAM16
- 2D constellation is constructed from 2 successive unipolar PAM symbols in time.
- Many 2D choices possible. Under investigation

Example 2D constellations

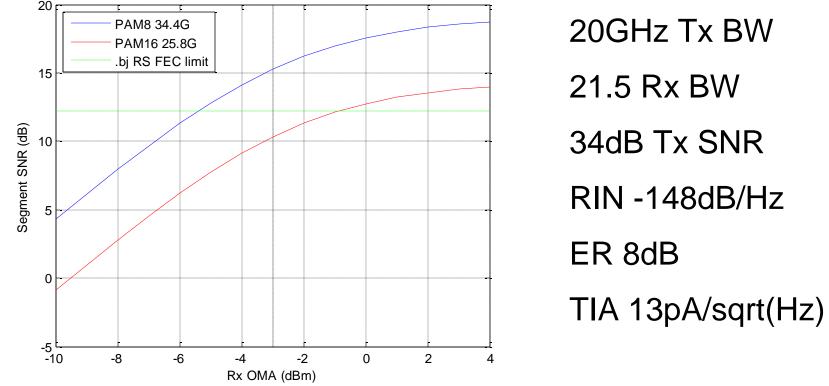
128-DSQ (Double SQuare)

Source: 802.3an ungerboeck_2_0904.pdf

Electrical PAM-N comparison

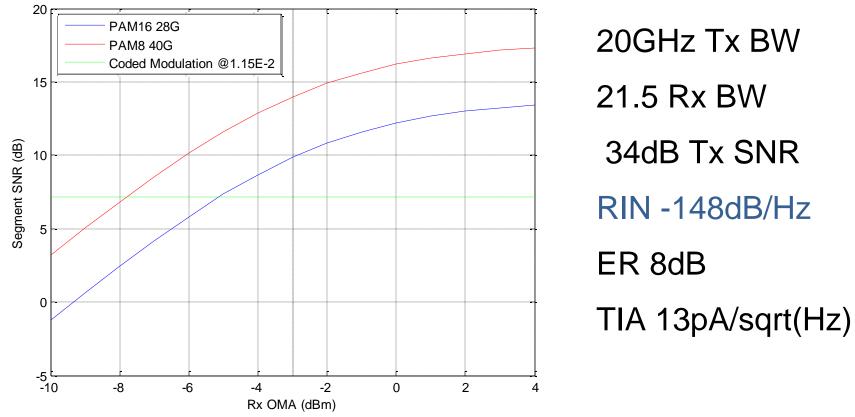

	PAM8 + 802.3bj FEC	PAM16 + 802.3bj FEC	PAM8 with coded modulation	PAM16 with coded modulation
Baud rate	34.4G	25.8G	40G	28G
FEC Target BERi for 1e- 15 BERo	2.2E-5	2.2E-5	1.15E-2	1.15E-2
Latency Target	100ns	100ns	<500ns	<500ns
Coding Overhead	2.72%	2.72%	19.5%	12%
Mapping / Coding gain	5.8dB	5.8dB	10.9dB	10.9dB

- Coded Modulation with 12% overhead can work with 3 orders of magnitudes higher BER than .bj RS FEC
- Latency increases up to 500ns from 100ns

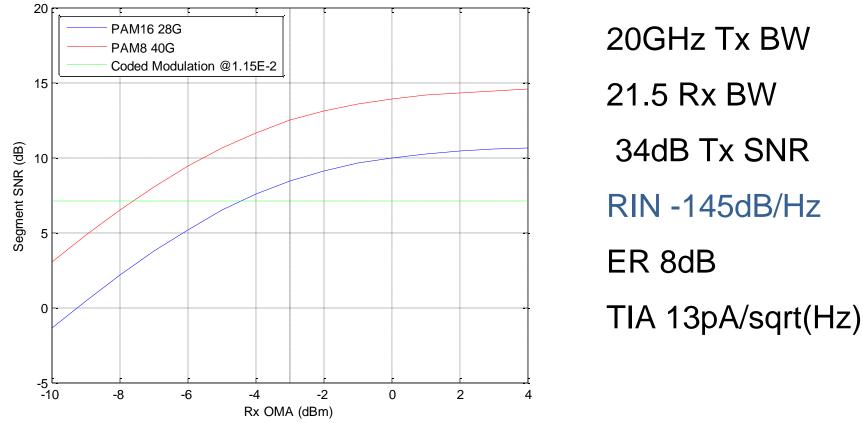

Electrical PAM-N comparison

	PAM8 with 802.3bj FEC	PAM16 with 802.3bj FEC	PAM8 with Coded Modulation	PAM16 with Coded Modulation
Baud rate	34.4G	25.8G	40G	28G
FEC Target BER	2.2E-5	2.2E-5	1.15E-2	1.15E-2
Required SNR (dB)	25.2	31.1	19.5	25.2
Relative Noise BW Penalty (dB)	1.25	0	1.9	0.36
Relative ISI Penalty, 20G BW (dB)	0.5	0	0.9	0.12
Net (Noise + BW) Penalty (dB)	1.75	0	2.8	0.48
Relative SNR Margin (dB)	0	-4.15	+4.65	+1.27

- Coded Modulation for 28G PAM16 can reduce the baud rate and provide 1.27dB margin vs. PAM8 with .bj FEC
- Over-clocked PAM8 with Coded Modulation (40G) improves SNR by 4.65dB.



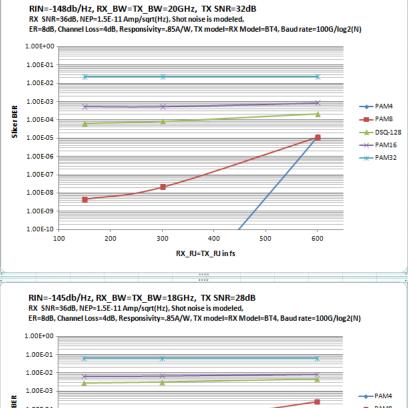
Optical link comparison with 802.3bj FEC

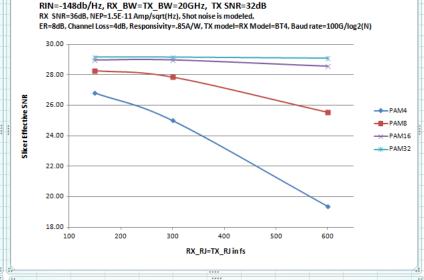

- PAM8 supports 4dB link budget with Tx OMA of +1dBm
 - ➤ 2.5dB margin
- PAM16 with 802.3bj RS FEC will require higher OMA

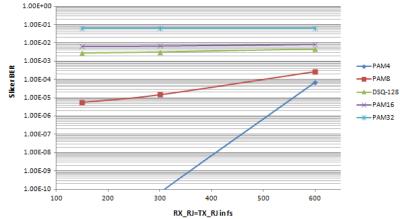
Optical link with coded modulation

- Coded Modulation enables PAM16 at 28G and PAM8 at 40G.
- For a 4 dB channel budget, PAM16 supports 2.2 dB slicer margin, and PAM8 supports 4.85dB slicer margin

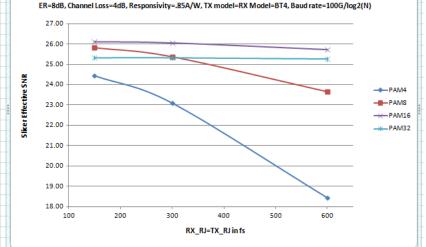
Optical link with coded modulation




21.5 Rx BW 34dB Tx SNR RIN -145dB/Hz ER 8dB


- Coded Modulation enables PAM16 at 28G and PAM8 at 40G.
- For a 4 dB channel budget, PAM16 supports 1.2 dB slicer margin, and PAM8 supports 4.6 dB slicer margin

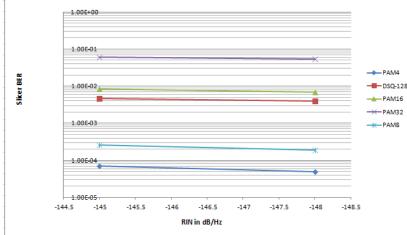
Monte-Carlo Simulations


BER/SNR curves as a function of Jitter

RIN=-145db/Hz, RX_BW=TX_BW=18GHz, TX SNR=28dB RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,

Monte-Carlo Simulations

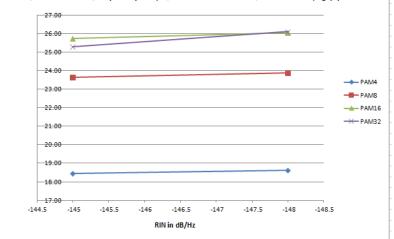
BER/SNR curves as a function of RIN


RX_Jitter=TX_Jitter=150fs RMS, RX_BW=TX_BW=20GHz, TX SNR=32dB RX_Jitter=TX_Jitter=150fs RMS, RX_BW=TX_BW=20GHz, TX SNR=32dB RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled, RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled, ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N) ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N) 1.00E+00 29.50 1.00E-01 29.00 1.00E-02 28.50 1.00E-03 SNR -----PAM4 28.00 Slicer BER Effective 1.00E-04 -DSQ-128 27.50 PAM16 1.00E-05 licer 27.00 1.00E-06 26.50 1.00E-07 26.00 1.00E-08 25.50 1.00E-09 1.00E-10 25.00 -144.5 -145 -145.5 -146 -146.5 -147 -147.5 -148 -148.5 -144.5 -145 -145.5 -146 -146.5 -147 -147.5 -148 -148.5 RIN in dB/Hz RIN in dB/Hz

SNR

r Effective

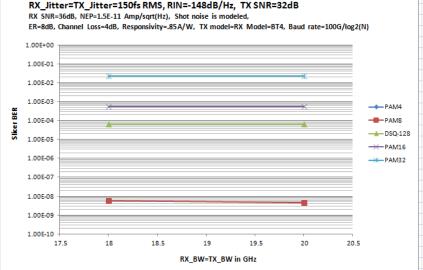
RX_Jitter=TX_Jitter=600fs RMS, RX_BW=TX_BW=18GHz, TX SNR=28dB RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,


ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N)

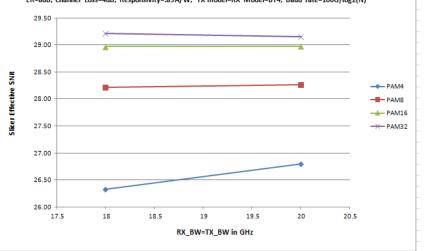
RX_Jitter=TX_Jitter=600fs RMS, RX_BW=TX_BW=18GHz, TX SNR=28dB

RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,

ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N)

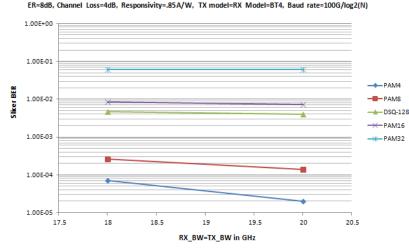


PAM8


-X PAM32

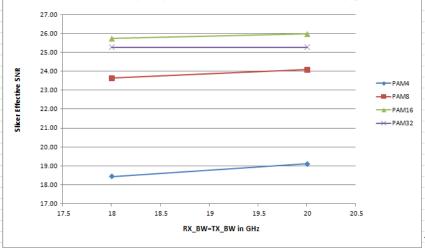
Monte-Carlo Simulations

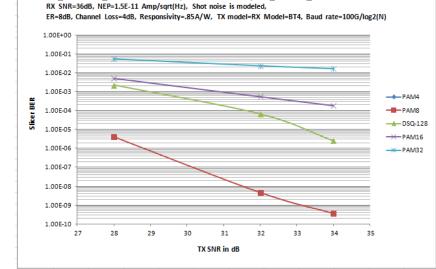
BER/SNR curves as a function of Bandwidth



RX_Jitter=TX_Jitter=150fs RMS, RIN=-148dB/Hz, TX SNR=32dB RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,

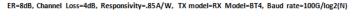
ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N)

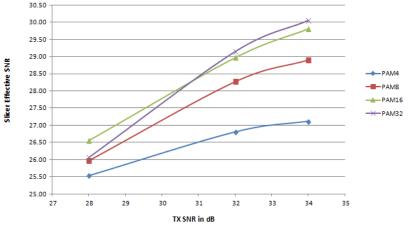

RX_Jitter=TX_Jitter=600fs RMS, RIN=-145db/Hz, TX SNR=28dB RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,


RX_Jitter=TX_Jitter=600fs RMS, RIN=-145dB/Hz, TX SNR=28dB

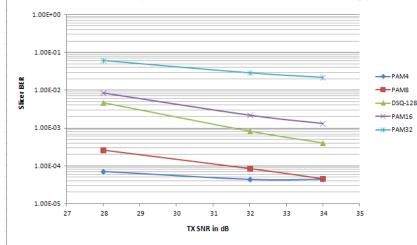
RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,

ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N)

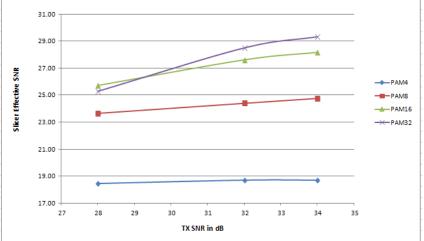



Monte-Carlo Simulations BER/SNR curves as a function of TX SNR

RX Jitter=TX Jitter=150fs RMS, RIN=-148dB/Hz, RX BW=TX BW=20GHz


RX_Jitter=TX_Jitter=150fs RMS, RIN=-148dB/Hz, RX_BW=TX_BW=20GHz RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,

RX_Jitter=TX_Jitter=600fs RMS, RIN=-145db/Hz, RX_BW=TX_BW=18GHz RX_SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,


ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N)

RX_Jitter=TX_Jitter=600fs RMS, RIN=-145dB/Hz, RX_BW=TX_BW=18GHz

RX SNR=36dB, NEP=1.5E-11 Amp/sqrt(Hz), Shot noise is modeled,

ER=8dB, Channel Loss=4dB, Responsivity=.85A/W, TX model=RX Model=BT4, Baud rate=100G/log2(N)

Summary

- We have proposed new coding and mapping alternatives for PAM.
- We have a high degree of confidence in technical feasibility.
- Coded modulation trades up to 500 ns of latency to provide a robust optical link.
- SNR Requirements and bandwidth impacts of PAM8 and PAM16 were investigated.
- Coded Modulation enables 28G over-clocked PAM16, and 40G over-clocked PAM8, with margin.