

Kotura Analysis: WDM PICs improve cost over LR4

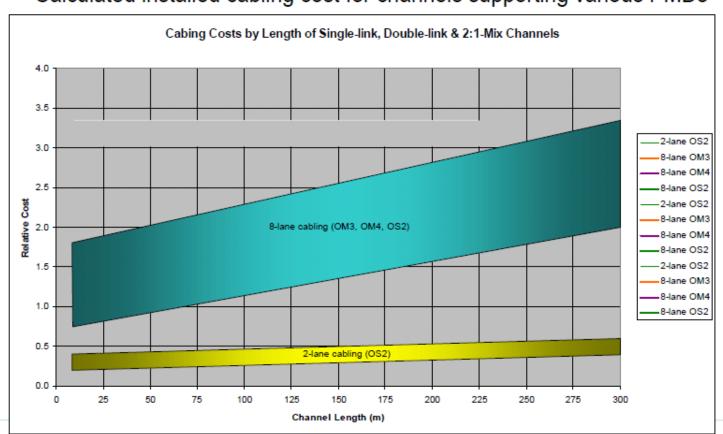
IEEE P802.3bm - 40 Gb/s & 100 Gb/s Fiber Optic Task Force - Sept 2012

Contributors:

Mehdi Asghari, Kotura Samir Desai, Kotura Arlon Martin, Kotura

Recall the motivation for WDM PICs

- ▶ For the transceiver
 - "Reduction of number of components is key to achieve the lowest cost solution for data center applications" src: anderson_01_1111
- For data center cabling
 - Lowest cabling cost (by far) is 2 fiber SMF, source Cole_01_0512 (Abbott, Cole, Coleman, Kolesar, and Swanson)
- ► At the last meeting we were requested to provide some additional information on the cost of WDM PICs (within the IEEE guidelines regarding cost discussions)



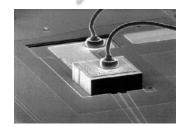
Value Proposition for WDM PICs is Significant

Cabling Channel Costs

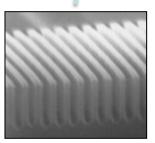
Calculated installed cabling cost for channels supporting various PMDs

Key Points:

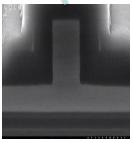
- 1. WDM solutions would use the same 2-lane cabling (OS2) used for LR, LR4
- 2. The complexity of any nR4 proposal should be compared to SR4 and SR10

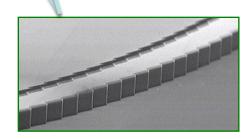


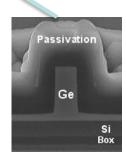
15


Recall that all the key components are integrated

Opto-electronic integration of all components except laser eliminates dozens of piece parts




Light source


Grating

Modulator

WDM Mux/Demux

Detectors

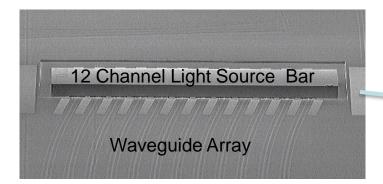
Low-Cost External Cavity (EC) Lasers

- Laser wavelength accuracy: ±50GHz absolute and ±5GHz relative
- Enables DWDM with accurate channel registration control.
- Use of commodity active components (RSOA's or FPs).
- Enables an array hybridization approach with generic actives.
- Parallel integration capacity to create multi-channel arrays
- <10kHz line-width demonstrated
- RIN <-140 dBH z^{-1}

Chirp much lower than DFB (<x10) **Waveguide Grating** Wavelength tuning easily possible Coupled power into Si wavequide Fotal Output Power [mW] Amplification provided by InP gain element (front facet reflectivity < 10-4) Voltage [V] -0.5 Hybrid laser cavity ~mm long Distributed Bragg grating 140 150 100 120 40 etched into the Si wa Bias Current [mA]

Gain element

Rib waveguide

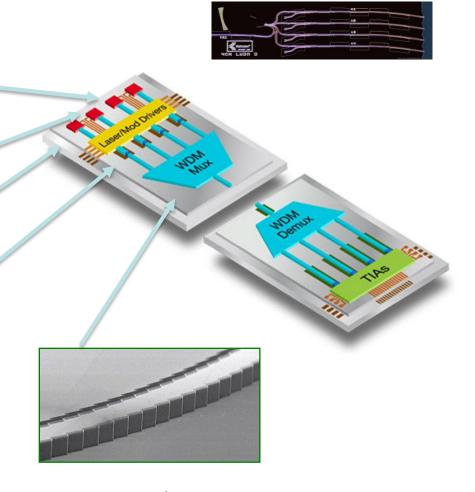

grating

200 - 1000 µm

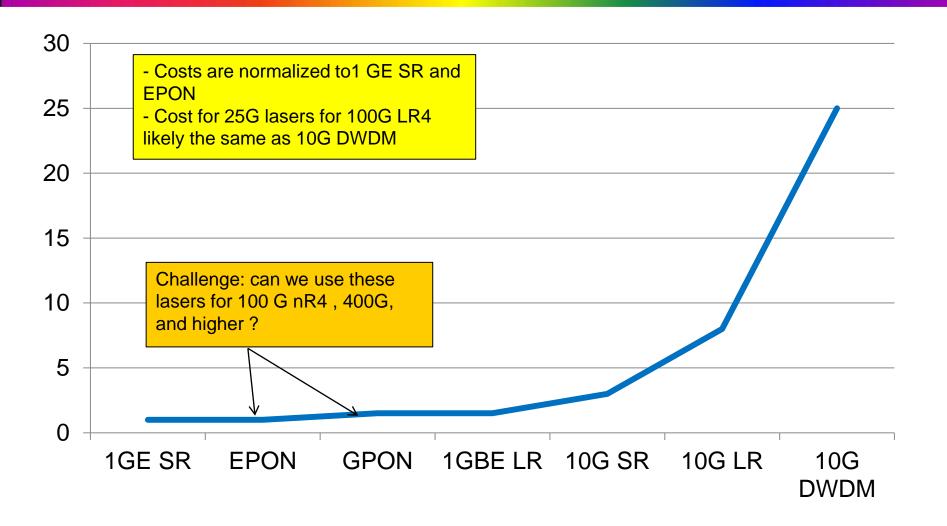
Monitor

Photodiode

Integrating WDM lasers onto the transmitter chip


Generic GE-style gain chips create WDM external cavity lasers after bonding. They can be easily made in arrays.

Laser Grating


Modulator

WDM Mux/Demux

Kotura estimate of laser sub-assembly costs

Kotura Internal Analysis- The BOM

	SR4	Silicon photonics nR4	LR4
Lasers	1t	1t	5t
	4x25G VCSELs	4 FP lasers	4 WDM 25G DMLs
OSA	1u Lens, carriers	1u SP integrated modulators & WDM	5u Integration of WDM and Laser subassemblies
Drivers	1v	1v	2.5v
	CMOS or SiGe	CMOS or SiGe	SiGe or GaAs
Detector Array	1.5w 4x25G detector	1w SP integrated detectors & WDM	2.5w Integration of WDM and Detector array
CDR Array	1.5x	1x	2x (LR spec tougher)
Package	1y	1y	3y
	non hermetic	non hermetic	hermetic
Connector	5z	1z	1z
	MPO	LC	LC

Reduction in Assembly Costs

- 1. Integration minimizes optical assembly
- 2. Wafer scale flip-chip bonding of 4-channel gain array
 - Automated, passive alignment
 - 40 seconds per array
- 3. Wafer scale testing
- 4. Die attach 4x25 CMOS driver array
- Die attach TIAs on Rx
- Connectorize TOSA-ROSA in QSFP/CFP4

Low Cost Checklist

- √ Use CMOS where ever possible
- √ No WDM specific lasers, no laser sub-assembly (no isolators, beam collimators, lens cap, etc.)
- √ No hermetic packages
- √ No active laser alignment
- √ No detector sub assembly
- √ No TEC
- √ No WDM assembly
- √ Use duplex connector instead of arrayed MPO

Silicon photonics is one low-cost WDM PIC example

- CMOS chip fabrication
- Low-cost, flip-chip bonded Gig E style light source
- Full integration of laser grating, modulator, mux/demux and detectors
- CMOS drivers and TIAs
- Minimal piece parts
- Electronics style assembly
- Non hermetic packaging

