100G-BASE-WDM4 optical budget constraints

Contributors Yurii Vlasov IBM Douglas Gill IBM Stefan Rochus CyOptics

802.3bm SMF AdHoc Meeting, January 8, 2013

Introduction

- One of P802.3bm adopted objectives : "Define a 100 Gb/s PHY for operation up to at least 500 m of SMF"
- 100G-BASE-WDM4 PMD has been proposed vlasov_01a_1112_optx
 - 4ch CWDM, Uncooled, Retimed
 - Single die DFB laser array
 - Channel insertion loss up to 3.5dB
 - Link reach up to 2km
- TF November 2012 Plenary Meeting Question:
 - Is uncooled CWDM DFB laser array at elevated temperatures feasible?
- Impact of elevated case temperatures on 100G-BASE-WDM4 optical budget is discussed

Proposed 100G-BASE-WDM4 Link Budget

Reference:100GBASE-WDM4 illustrative link power budget (vlasov_01a_1112_optx)

- Channel insertion loss is defined as 3.5dB for a 2km link
- It is defined for case temperature 0°C 70°C in the BOL as stated in NEBS GR-63

100G-Base-WDM4 block diagram from vlasov_01a_1112_optx

• Link budget implies laser average output power of 13dBm (20mW) at Oe 3

Question:

Is uncooled CWDM DFB laser array at elevated temperatures feasible?

- Temperatures higher than 70°C can be expected at the card edge with dense ports
- Laser temperature can significantly exceed that

Scott Kipp and Terry Graham, <u>"PLUGGABLE MODULE HEATSINK REQUIREMENTS</u>", Google Thermal Modeling Group, August 15th, 2012

Conclusion: Temperature difference of 5-10°C is feasible

Answer:

Existing 4ch CWDM DFB array can support 100G-BASE-WDM4 power budget for 2km link at elevated temperatures

- CyOptics 4 channel DFB arrays
 - Based on CyOptics high volume manufacturing platform (millions shipped)
 - CWDM channel grid 1270, 1290, 1310 and 1330nm
 - Array not optimized for CW operations (originally designed for direct modulation)
 - $\lambda/4$ shifted DFBs and spot size converters decrease slope efficiency
 - Additional performance difference due to use of $\lambda/4$ shifted DFBs and spot size converters in DFB array
- Performance in comparison with discrete single-channel DFB

Slope Efficiency	Discrete	Array	Unit
25C	0.44	0.35	W/A
75C	0.31	0.21	W/A
85C	0.29	0.19	W/A

- At 75C slope efficiency of array degraded vs discrete laser diode
- The array design and slope efficiency can be optimized for CW operation

Impact on total module power

DFB CWDM Array bias currents needed to achieve 20mW at 75C

Discrete DFB laser	83mA
4ch CWDM DFB Array	119mA

Assumptions:

- Un-cooled operation DFB die temperature raises to 85C
- DFB current need to be adjusted to maintain constant optical power of 20mW
- 2km link power budget will be maintained

Conclusion: Total laser dissipated power is increased by 3x However it is still below 1W for all 4 channels

Estimates of a total module power

100G-Base-WDM4 block diagram from vlasov_01a_1112_optx

Lowest power classes for both CFP4 and QSFP28 are feasible

Conclusion:

Total module power <2W will help to decrease case temperature even for dense ports

Conclusion

- Existing CWDM DFB arrays can support WDM4 specs at elevated temperatures
- Power efficiency of WDM4 solution would allow to increase port densities at the card edge
- Further development of efficient cooling solutions beyond IEEE standards activities is needed
 - MSA package specs (cooling area, thermal resistance, etc.)
 - OIF card edge specs
 - Cooling ducts/buffles and/or heatpipes