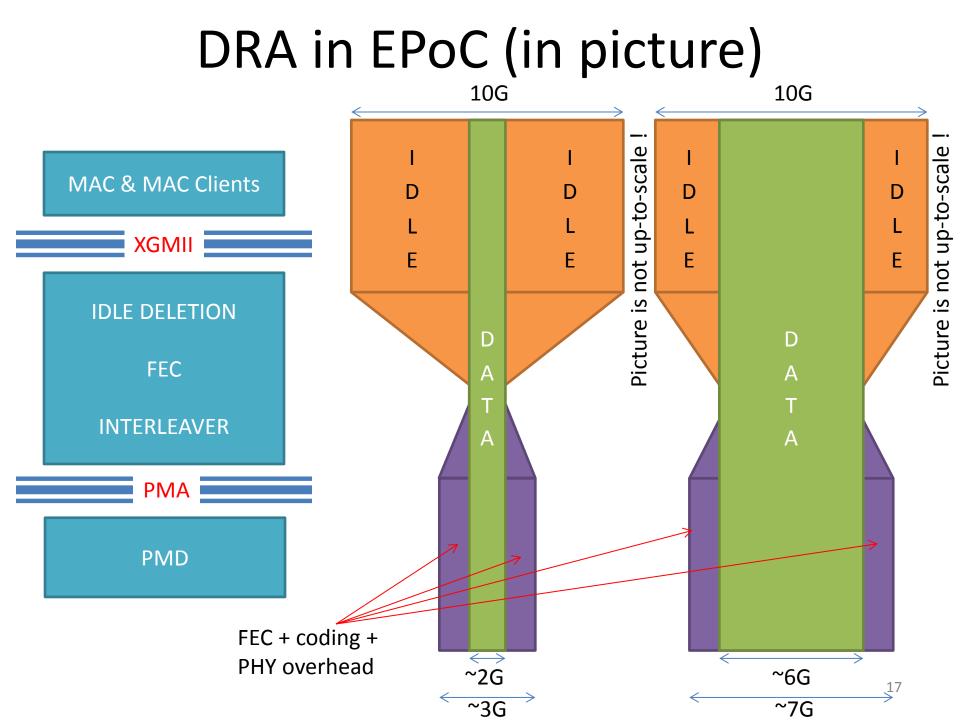
Data Rate Adaptation

Marek Hajduczenia, PhD ZTE Corporation <u>marek.hajduczenia@zte.pt</u> Andrea Garavaglia Qualcomm Inc. andreag@qti.qualcomm.com

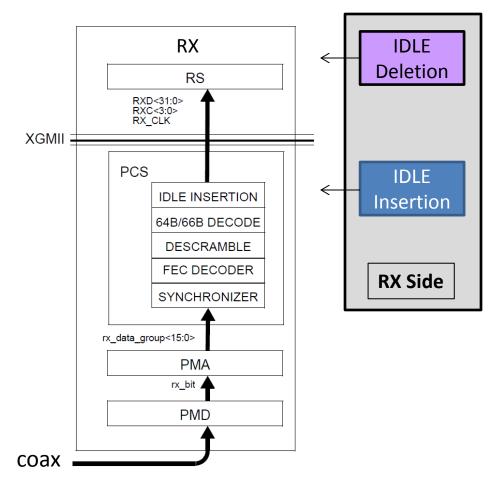

Scope

 This second par of the slide deck illustrates the detailed changes needed for DRA, based on the principles described in the first part

 <u>Note</u>: For now only the basic functionality are covered, while more advanced cases like code word shortening will be treated in a separate presentation, revising and further refining these baseline design

Receive Direction in CLT/CNU

DRA IN EPOC - RX


IDLE handling in Rx direction (CNU/CLT)

IDLE Deletion process

- Extra IDLEs are then removed above XGMII interface and complete Ethernet frames are then passed to respective MAC Clients.
- Data rate above MAC is equal to R_{eff}.

IDLE Insertion process:

- FEC encoded packets arrive at PCS at the PMD rate and are fed into the FEC decoder. After removal of FEC parity, data rate becomes R_{eff}.
- Gaps between frames are filled with IDLEs to match XGMII data rate (data rate of R_{MX}).

IDLE Deletion (baseline I)

IDLE Deletion process - objective

- Extra IDLEs are removed above XGMII interface and complete Ethernet frames are then passed to MAC Clients – this is part of normal Ethernet MAC operation
 - data rate above MAC is equal to R_{eff}

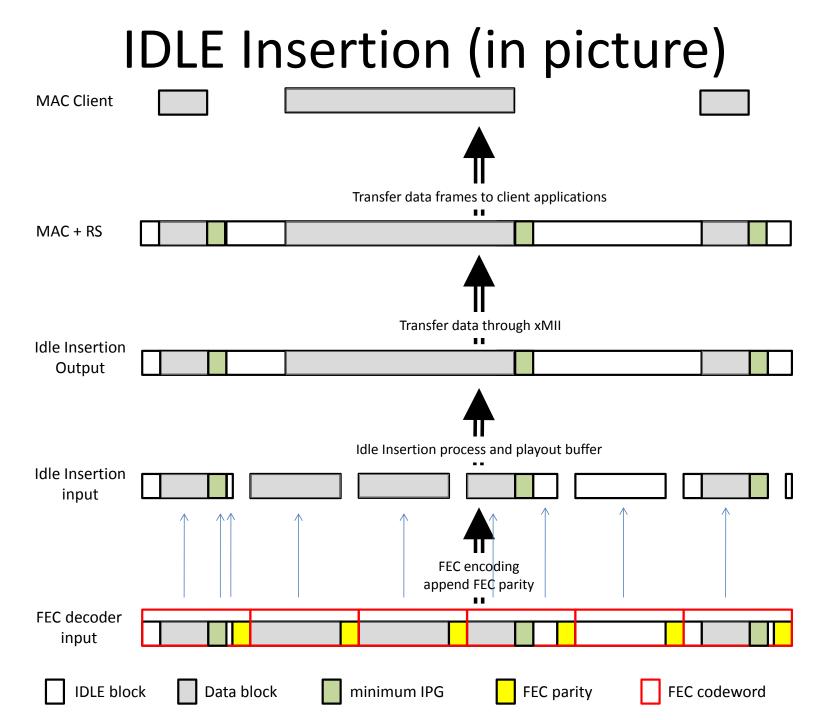
How is that achieved in 10G-EPON?

- The Reconciliation Sublayer (RS) processes incoming packets from the receiving PCS layer and selects the target MAC instance based on LLID contained in preamble
- IDLEs are discarded by MAC, and they never reach any MAC Client

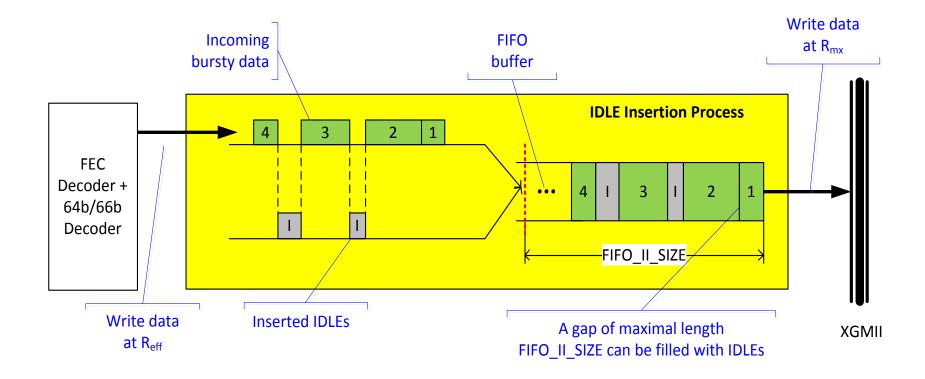
How it could be done in EPoC?

 Implementation of this function from 10G-EPON can be directly reused in EPoC – see IEEE Std 802.3, 76.2.6.1.3 for more details

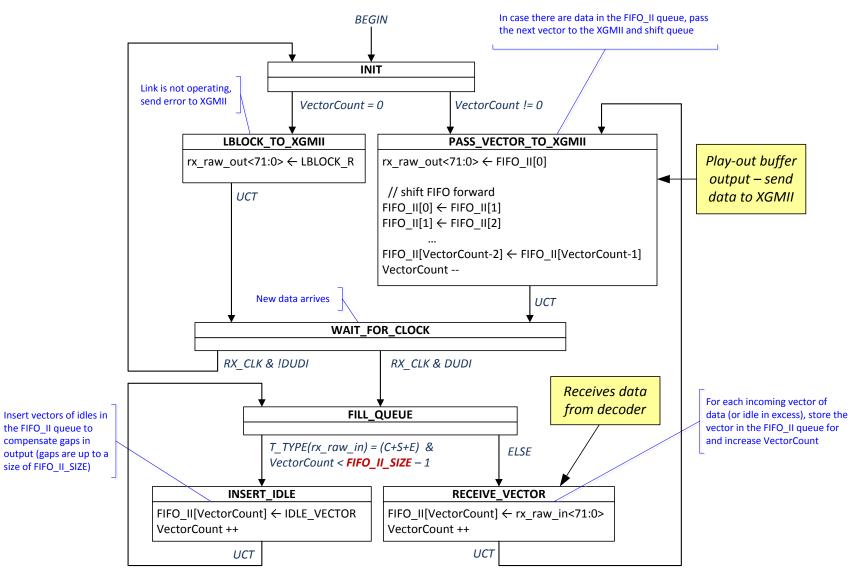
Baseline proposal I: IDLE Deletion in EPoC in Rx direction to use 10G-EPON IDLE Deletion mechanism per IEEE Std 802.3, Clause 76. This applies to both CLT and CNU sides.


IDLE Insertion – Rx direction

IDLE Insertion process – objective


- FEC encoded packets arrive at PCS at the PMD rate and are fed into the FEC decoder at the RX side.
- After removal of FEC parity, data rate becomes R_{eff}. Gaps between frames are filled with IDLEs to achieve data rate of R_{MX} and match XGMII data rate.

How is that achieved in 10G-EPON?


- Data leaving FEC decoder is bursty. FEC parity data was removed. Effective data rate is smaller than R_{MX}.
- Bursty data is then fed into the IDLE Insertion function, containing a playout buffer. Data is inserted at R_{eff} and sent towards XGMII at R_{MX}.
- Difference between R_{eff} and R_{MX} is compensated by insertion of IDLE characters when play-out buffer becomes empty
- The next two slides demonstrate this process in a visual form

IDLE Insertion (implementation example)

IDLE Insertion (SD)

IDLE Insertion (baseline II)

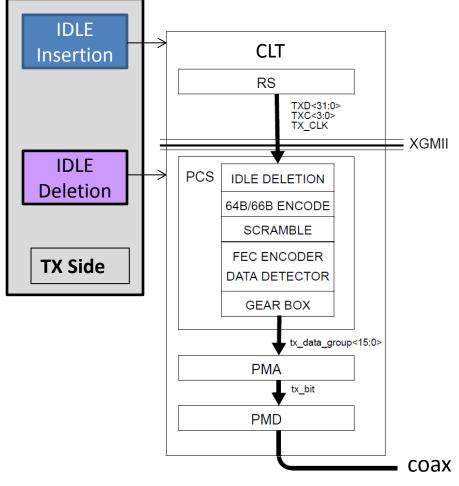
How it could be done in EPoC?

- Implementation of this function from 10G-EPON can be directly reused in EPoC see IEEE Std 76.3.3.7 and Figure 76-23
- The size of the IDLE Insertion buffer (parameter FIFO_II_SIZE) will need to be defined, based on supported PHY rates and adopted FEC for DS and US
 - FIFO_II_SIZE needs to accommodate FEC and DRA for the largest possible gap that can be observed under normal operating conditions
 - Corresponds to the maximum-size frame at lowest coax rate and the associated FEC parity

Baseline proposal II :	IDLE Insertion in the Rx direction reuses 10G-EPON design
	as defined in IEEE Std 802.3, Clause 76. The value for the
	FIFO_II_SIZE is TBD at this time, pending selection of FEC
	code and minimum coax data rate. This applies to both
	CLT and CNU.

Straw Polls #1 and #2

#1: IDLE Deletion in EPoC in Rx direction to use 10G-EPON IDLE Deletion mechanism per IEEE Std 802.3, Clause 76. This applies to both CLT and CNU sides.


Yes: No: Undecided:

#2: IDLE Insertion in the Rx direction reuses 10G-EPON design as defined in IEEE Std 802.3, Clause 76. The value for FIFO_II_SIZE is TBD at this time, pending selection of FEC code and minimum coax data rate. This applies to both CLT and CNU.

Transmit Direction in CLT/CNU

DRA IN EPOC - TX

Handling in the TX direction (CLT/CNU)

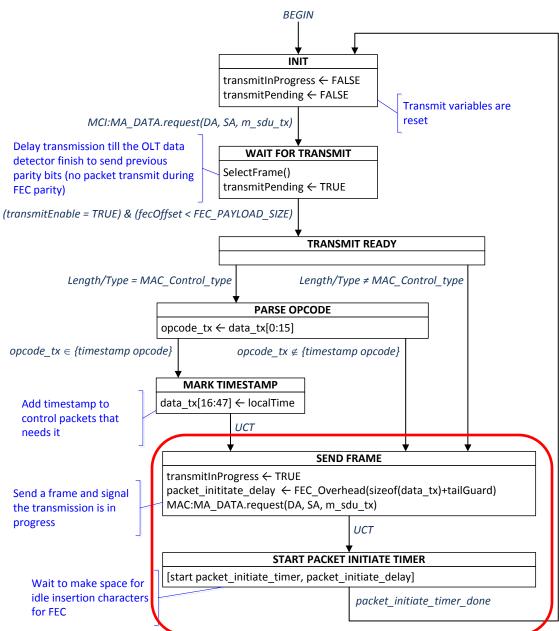
Idle Insertion process

- Packets are properly inserted (by the Multipoint Transmission Control) and filled with IDLEs by the MAC layer. MPMC keeps data rate at R_{eff}.
- In this way, a fixed rate of 10G is guaranteed by MAC for the XGMII interface (R_{MX}). Extra IDLEs inserted by MAC create space for FEC parity bits and all PHY overhead in PMD

Idle Deletion process

- Extra IDLEs are then removed by the IDLE Deletion process inside the PCS (upper PHY stack) to match with PMD rate and include FEC parity bits.
- At the output of Idle Deletion process, data rate is equal to R_{eff}.

IDLE Insertion – TX Direction

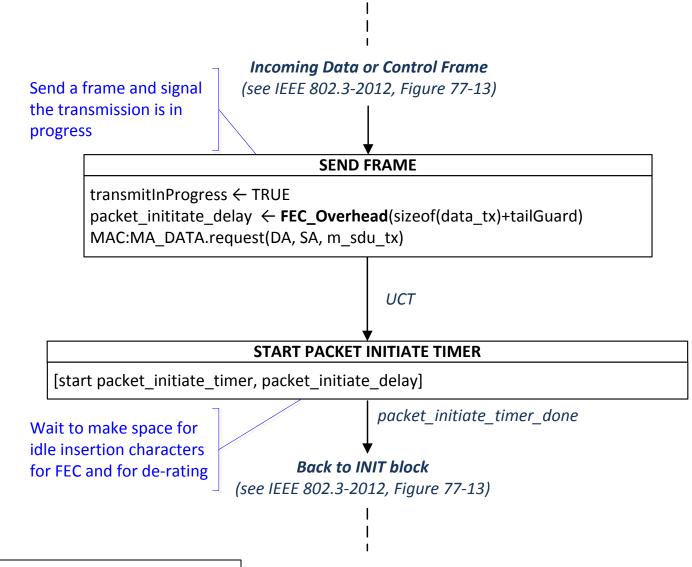

IDLE Insertion process - objective

 Extra IDLEs are inserted above XGMII interface (by MPMC), in order to leave sufficient space for insertion of FEC parity in PCS and other PMD overhead

How is that achieved in 10G-EPON?

- Idle insertion in implemented for the TX direction by spacing packets at Multi-Point Control, so that MAC can inserts IDLEs (see Clause 77.2.2)
- Every time a packet is sent, a function called FEC_Overhead is executed to compute any additional waiting time that needs to be considered for FEC parity insertion
 - The additional time is added on a per code word base, after the packet that complete the payload content of the code word
 - The packet and the FEC code word payload does not need to align, i.e. a packet can be carried by one or more FEC code words
 - See slides 28, 29 and 32 for details

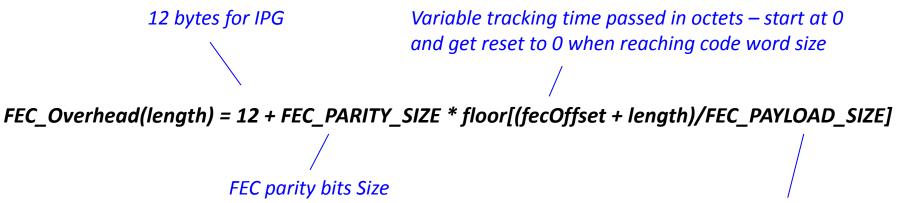
EPON IDLE Insertion – OLT side



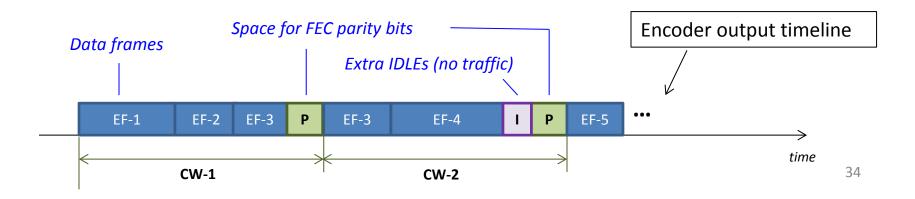
Key remarks:

- A MAC Control instance gives back control after completing transmission
- A transmission includes the packet and could include additional space for parity
- The parity is added on a code word size base (not necessarily after each packet), by FEC_Overhead function
- A packet is delayed till end of FEC parity transmission in case popping up outside FEC payload transmission (in order to avoid jitter after timestamp)

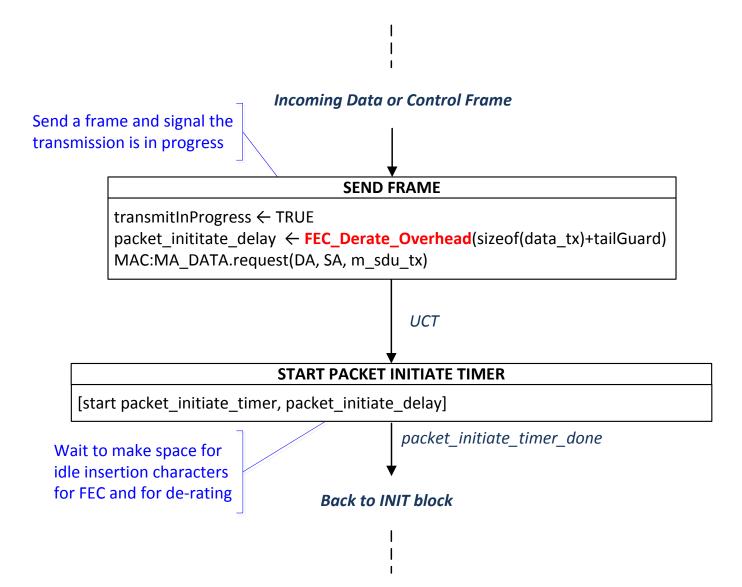
IEEE 802.3, Clause 77, Figure 77-13


EPON IDLE Insertion – OLT side

IEEE 802.3, Clause 77, Figure 77-13 - Details

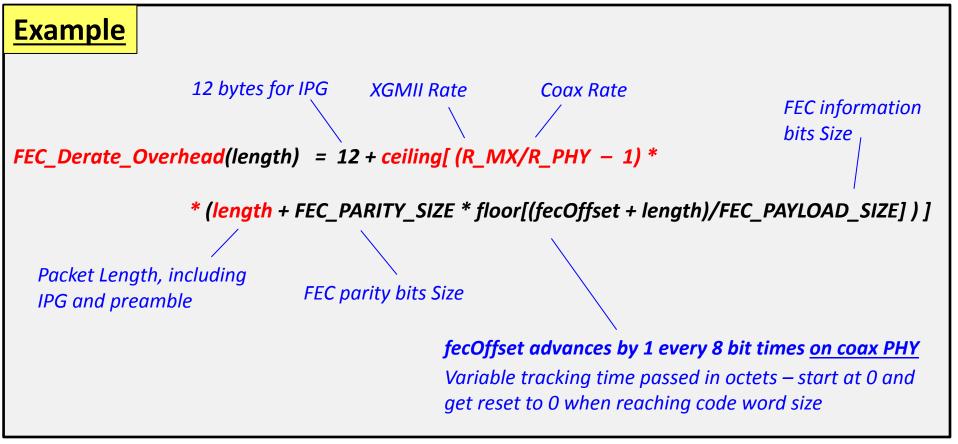

10G-EPON FEC_Overhead function

fecOffset advances by 1 every 8 bit times on PHY



FEC information bits Size

The function returns the length of the data to transmit and cumulates information bits (tracked by the variable *fecOffset*) - when the cumulated data exceeds the FEC_PAYLOAD_SIZE, a FEC_PARITY_SIZE interval is also included to space for parity


EPoC IDLE Insertion – CLT side

EPoC FEC_Overhead Function

How it could be done in EPoC?

The FEC_Overhead function is updated to FEC_Derate_Overhead to include also the de-rating component, which needs to be applied to data, IPG and parity insertions

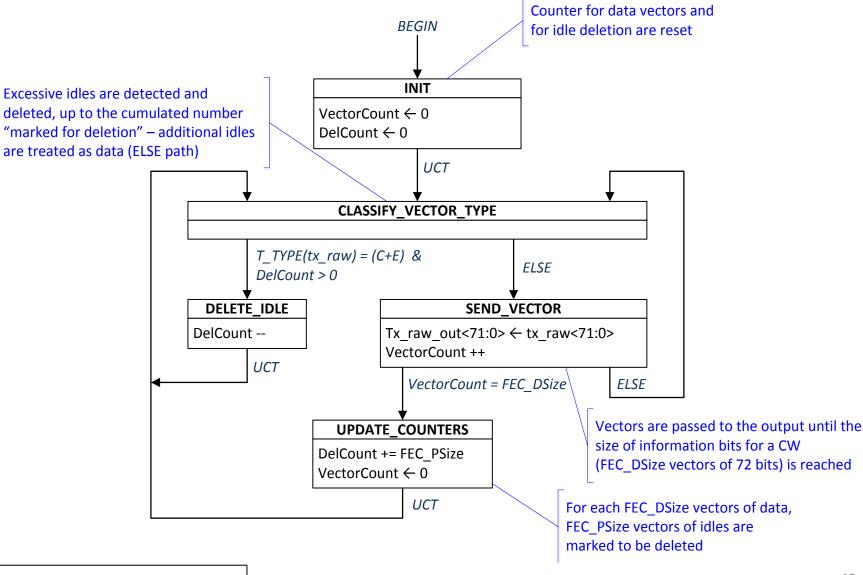
EPoC IDLE Insertion (baseline III)

Baseline proposal III :	EPoC IDLE Insertion in the TX direction re-uses 10G-EPON
	design as defined in IEEE Std 802.3, Clause 77 with new FEC
	parameters for EPoC. The functionality is extended to
	include de-rating by means of a new function
	<pre>FEC_Derate_Overhead(·) that replaces the FEC_Overhead(·)</pre>
	function, as illustrated in slides 35 and 36 (changes from
	EPON specification marked in red).

 The exact modification of the formula and related parameters is TBD

<u>Note</u>: The name of the new function is just an example and can be finalized at a later stage.

IDLE Deletion – TX Direction

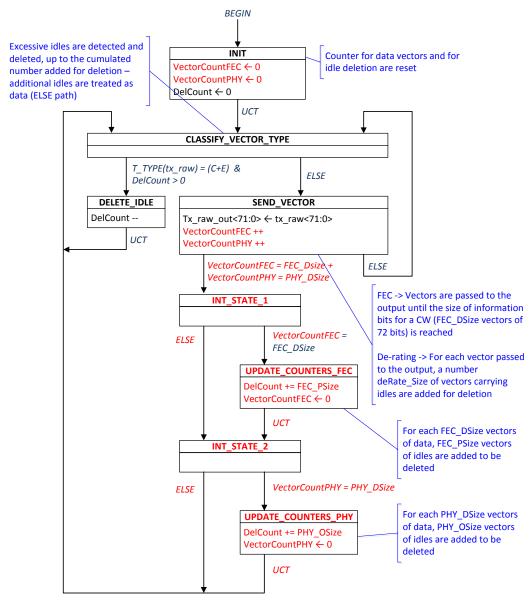

IDLE Deletion process - objective

- Extra IDLEs are removed below XGMII interface before PHY processing occurs
 - Effective data rate at PHY after deletion is equal to R_{eff}

How is that achieved in 10G-EPON?

- Idle deletion in implemented in the PCS for TX direction (see Clause 76.3.2.1)
- The number of vectors transiting the XGMII interface are counted and the function deletes FEC_PSize IDLEs at each FEC code word payload FEC_DSize of data:
 - At initialization vector counter and idle deletion counter are reset to zero
 - Each time a vector of data transits, the vector counter is incremented
 - When the vector counter reaches the size of the code word payload, the idle deletion counter is incremented by the size of the code word parity
 - Each time vector of IDLEs transits, deletion occurs in case the idle deletion counter is larger than zero (e.g. still some IDLE to be deleted)
- See next slide for the corresponding state diagram

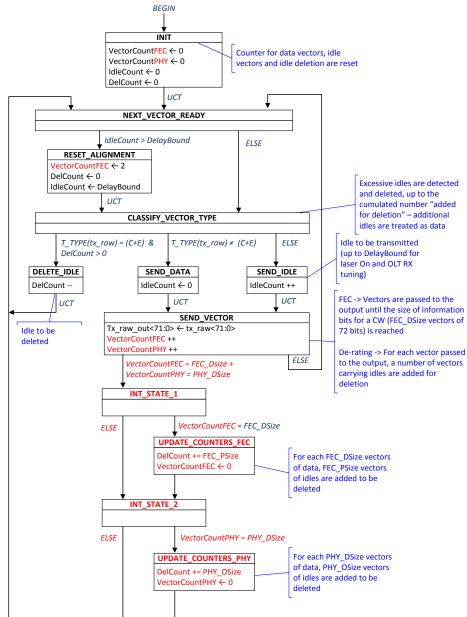
10G-EPON IDLE Deletion – OLT side



EPoC IDLE Deletion – TX Side

How it could be done in EPoC?

- For FEC parity the same functionality could be re-used, with updated FEC parameters for CW payload and CW parity sizes (TBD, depending on FEC decisions)
- For additional IDLE deletion due to de-rating, the same principle can be applied by simply introducing a new independent counter:
 - In fact, for each vector of encoded data, a number of IDLEs proportional to the ratio between R_{MX} and R_{eff} needs to be deleted – they were inserted above XGMII to allows enough time for the PHY transmission at rate R_{eff}
 - Two new parameters PHY_DSize e PHY_OSize are introduced (values TBD):
 - Each time a vector of encoded data transits, the new vector counter for derating is incremented (this is done independently of the FEC vector counter)
 - When the de-rating vector counter reaches the size PHY_DSize, the idle deletion counter is incremented by the size PHY_OSize
 - Each time vector of IDLEs transits, deletion occurs in case the idle deletion counter is larger than zero (e.g. still some IDLE to be deleted)
- See next slide for the corresponding state diagram


EPoC IDLE Deletion – CLT side

In **red** the change due to de-rating from the original chart – final format and proper rounding can be defined once know PHY parameters

- FEC_PSize vectors of IDLEs are deleted every (FEC_DSize + FEC_PSize) vectors
- Enough IDLEs to cover DelayBound are transmitted
- PHY_OSize vectors of IDLEs are deleted every (PHY_OSize + PHY_DSize) vectors

EPoC IDLE Deletion – CNU side

In **red** the change due to de-rating from the original chart – final format and proper rounding can be defined once know PHY parameters

- FEC_PSize vectors of IDLEs are deleted every (FEC_DSize + FEC_PSize) vectors
- Enough IDLEs to cover DelayBound are transmitted
- PHY_OSize vectors of IDLEs are deleted every (PHY_OSize + PHY_DSize) vectors

EPoC IDLE Deletion (baseline IV)

Baseline proposal IV: EPoC IDLE Deletion in the TX direction re-uses 10G-EPON design as defined in IEEE Std 802.3, Clause 76 with new FEC parameters. The function is extended to the EPoC case via additional variables for de-rating compensation, as illustrated in slides 43 and 44 (changes from EPON in red):

- A new counter VectorCountPHY is introduced
- The values for the FEC_PSize and FEC_DSize are TBD at this time, pending FEC code
- The values for the PHY_OSize and PHY_DSize are TBD at this time, pending minimum coax data rate
- The same principles is applies to both CLT (slide 41) and CNU (slide 42), on the respective state diagrams

Straw Polls #3

- #3: EPoC IDLE Insertion in the TX direction re-uses 10G-EPON design as defined in IEEE Std 802.3, Clause 77 with new FEC parameters for EPoC. The functionality is extended to include de-rating by means of a new function FEC_Derate_Overhead(·) that replaces the FEC_Overhead(·) function, as illustrated in slides 35 and 36 (changes from EPON specification marked in red).
 - The exact modification of the formula and related parameters is TBD

No:

Undecided:

Straw Polls #4

- #4: EPoC IDLE Deletion in the TX direction re-uses 10G-EPON design as defined in IEEE Std 802.3, Clause 76 with new FEC parameters. The function is extended to the EPoC case via additional variables for de-rating compensation, as illustrated in slides 43 and 44 (changes from EPON in red):
 - A new counter VectorCountPHY is introduced
 - The values for the FEC_PSize and FEC_DSize are TBD at this time, pending FEC code
 - The values for the PHY_OSize and PHY_DSize are TBD at this time, pending minimum coax data rate
 - The same principles is applies to both CLT (slide 31) and CNU (slide 32), on the respective state diagrams