
IEEE 802.3bn Phoenix, AZ 23-25 January 2013 PAGE 1

Data-rate adaption function for
EPoC (baseline proposal)

Andrea Garavaglia – Qualcomm
Marek Hajduczenia – ZTE
Patrick Stupar – Qualcomm

PAGE 2 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Supporters

 Hesham ElBakoury (Huawei)
 Duane Remein (Huawei)

PAGE 3 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Motivation and Scope
 Data Rate Adaptation (DRA) function is recognized as required for proper

operation of EPoC
 agenda_01b_1112.pdf lists DRA as one of challenge items

 No baseline proposals have been submitted so far
 We already reviewed 10G-EPON DRA and Clause 61 DRA mechanisms and

drew conclusions from these materials
 10G-EPON DRA seems more suitable for EPoC (see

hajduczenia_02_1112.pdf for more details)

 This contribution provides additional details on DRA implementation and
brings in a baseline motion
 It can be readily incorporated into MPCP for FDD and TDD modes for

individual tracks

This presentation focuses on de-rating only and the presented
design does not mean to preclude further changes to accommodate
additional EPoC functions

http://www.ieee802.org/3/bn/public/nov12/agenda_01b_1112.pdf
http://www.ieee802.org/3/bn/public/nov12/hajduczenia_02_1112.pdf

PAGE 4 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Background – EPON specification review (DS)

 IDLE Insertion and Deletion included in EPON spec [1] are used to
account for data rate adaption due to insertion of FEC parity bits at PCS

IDLE Insertion

IDLE Deletion

TX Side

IDLE Insertion

RX Side

IDLE Deletion

PAGE 5 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Background – EPON specification review (US)

 IDLE Insertion and Deletion included in EPON spec [1] are used to
account for data rate adaption due to insertion of FEC parity bits at PCS

RX Side TX Side

IDLE Deletion IDLE Insertion

IDLE Insertion IDLE Deletion

PAGE 6 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Background – EPON specification review

 IDLE characters are used in place of data across XGMII interface [2]

 In the TX direction:
 Gaps are created by the Multipoint Transmission Control (in MPMC sub-

layer) and filled up with IDLEs by the MAC layer below. In this way, a fixed
rate is guaranteed for the XGMII interface and space for FEC parity bits in
the data stream is created

 Extra IDLEs are then removed by the IDLE Deletion function inside the PCS
(upper PHY stack) and then replaced by FEC parity bits
 IPG IDLEs remain in the data stream (≥ 96 bits per Ethernet Frame)

 In the RX direction:
 The PCS inserts IDLEs after FEC decoding to fill in gaps created by the

removed FEC parity bits
 IDLEs are then removed above XGMII interface and complete Ethernet

frames are then passed to the MAC and respective upper layer clients

PAGE 7 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Function of IDLE characters in EPON / EPoC

 In EPON, IDLE characters are transmitted for three reasons:
 IPG between individual Ethernet frames (like in any P2P link)

 These IDLEs are FEC encoded and transmitted on the wire
 To prepare space in data stream for FEC parity bits (10G-EPON specific)

 These IDLEs are removed in PCS by IDLE Deletion and then replaced
with FEC parity data

 To fill in link when no actual data is transmitted (like in any P2P link)
 These IDLEs are FEC encoded and transmitted on the wire

 In EPoC, IDLE characters will be used as they are used in EPON, but also:
 Some amount of IDLEs will be inserted in MPMC to account for de-rating at

PHY (recall, PHY has capacity << 10Gb/s). How many IDLEs are inserted
per data vector – see next slide

 Another amount of IDLEs will have to inserted in some fashion to account
for TDD switching (We do not focus on TDD switching in these slides)

 All of these IDLEs will be removed in PCS and not transmitted on the wire

PAGE 8 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

De-rating – EPoC DS TX IDLE insertion (ref. 77.2.2)
 In case of EPoC, extra IDLEs are added for de-rating purposes

 Compared to EPON, some modification to state diagram (slide 9) are needed:
a) For FEC, the same function can be reused with adjusted parameters:

 (FEC_PAYLOAD_SIZE + FEC_PARITY_SIZE) = FEC_CODEWORD_SIZE

 FEC_PAYLOAD_SIZE / FEC_CODEWORD_SIZE = coding rate ≤ 1

b) For de-rating, extra IDLEs are added in proportion to the PHY rate of the
coax Rcoax with respect to the XGMII data rate Rxgmii – this account of a
ratio of R = (Rxgmii/Rcoax – 1) ≥ 0 between IDLEs and data

 Example: Rcoax = 2 Gb/s → R = 4 → every D data, 4D IDLEs are
added, whereby D includes both information and parity bits (i.e. de-
rating shall be applied to both payload and parity sizes)

The two components can be easily merged together in a new FEC_Derate_Overhead
function, to compute the time the next packet can be transmitted (see next slide)

PAGE 9 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC DS TX IDLE insertion in CLT (ref. Figure 77-
13)

data_tx
is the payload of tx PDU

tailGuard
PDU overhead: preamble,
Ethernet Frame header and IPG

FEC_Derate_Overhead(length)
is a function that calculates the
amount of time that the MPCP
control multiplexer waits following
the transmission of a frame of
size ‘length’ for the insertion of
FEC parity bits at PHY and for
scaling factor due to data rate
adaption to the coax

Note: the variable transmitInProgress is reset to FALSE in the INIT block, thus returning
the control to the Multi-Point Transmit Controller to allow transmission of next packet

Incoming Data or Control Frame
(see IEEE 802.3-2012, Figure 77-13)

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Back to INIT block
(see IEEE 802.3-2012, Figure 77-13)

Send a frame and signal the
transmission is in progress

SEND FRAME

transmitInProgress ← TRUE
packet_inititate_delay ← FEC_Derate_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Wait to make space for idle
insertion characters for FEC
and for de-rating

PAGE 10 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC DS TX IDLE insertion in CLT - functions

FEC_Overhead(length) = 12 + FEC_PARITY_SIZE * floor[(fecOffset + length)/FEC_PAYLOAD_SIZE]

packet length

FEC parity bits

FEC information bits

fecOffset advances by 1 every 8 bit times.
Variable tracking time passed in octets – start at 0
and get reset to 0 when reaching code word size

The FEC_Derate_Overhead function can be based on similar operations as included in the
FEC_Overhead function of EPON (here below – see clause 77.2.2.4) and includes FEC, a
scaling factor of about Rxgmii/Rcoax for rate adaption and appropriate rounding – the detailed
definition can be finalized once PHY parameters are available

Note: For the state diagram (slide 9) to work properly, the variable fecOffset shall advance at
the pace of coax transmission rate Rcoax (otherwise it will scroll also during the time of inserted
de-rating IDLEs, which would result in incorrect FEC calculations:

 “fecOffset advances by 1 every 8 bit times on coax”

(EPON FEC_Overhead function, clause 77.2.2.4)

PAGE 11 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC DS TX IDLE deletion in CLT

 In case of EPoC, extra IDLEs added for de-rating purposes shall be deleted

 Compared to EPON, some modification to state diagram (slide 12) are needed:
a) For FEC, the same function can be reused with adjusted parameters:

 (FEC_DSize + FEC_PSize) = CW_Size

 FEC_DSize / CW_Size = coding rate ≤ 1

b) For de-rating, extra IDLEs added in proportion to the PHY rate of the coax
Rcoax with respect to the XGMII data rate Rxgmii needs to be deleted –
this results in a ratio R = (Rxgmii/Rcoax – 1) ≥ 0 between IDLEs and data

 Example: Rcoax = 2 Gb/s → R = 4 → every D data, 4D IDLEs are
deleted, whereby D includes both information and parity bits

 We can define a parameter deRate_Size = R/coding_rate, which
accounts for the number of IDLE vectors to be deleted for each data
vector transmitted over the XGMII interface

Note: these are expressed
in vectors of 72 bits

PAGE 12 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC DS TX IDLE deletion in CLT (ref. Figure 76-9)

In red the change due to de-rating
from the original chart – final format
and proper rounding can be defined
once know PHY parameters

 FEC_PSize vectors of IDLEs are

deleted every (FEC_DSize +
FEC_PSize) vectors

 Enough IDLEs to cover
DelayBound are transmitted

 PHY_OSize vectors of IDLEs are
deleted every (PHY_OSize +
PHY_DSize) vectors

INIT
VectorCountFEC ← 0
VectorCountPHY ← 0
DelCount ← 0

BEGIN

UCT

DELETE_IDLE
DelCount --

T_TYPE(tx_raw) = (C+E) &
DelCount > 0

SEND_VECTOR

Tx_raw_out<71:0> ← tx_raw<71:0>
VectorCountFEC ++
VectorCountPHY ++

ELSE

ELSE

UPDATE_COUNTERS_FEC
DelCount += FEC_PSize
VectorCountFEC ← 0

VectorCountFEC =
FEC_DSize

UCT

Counter for data vectors and
for idle deletion are reset

FEC -> Vectors are passed to the output
until the size of information bits for a CW
(FEC_DSize vectors of 72 bits) is reached

De-rating -> For each vector passed to the
output, a number deRate_Size of vectors
carrying idles are added for deletion

For each FEC_DSize vectors of
data, FEC_PSize vectors of idles
are added to be deleted

Excessive idles are detected
and deleted, up to the
cumulated number added for
deletion – additional idles are
treated as data (ELSE path)

CLASSIFY_VECTOR_TYPE

UPDATE_COUNTERS_PHY
DelCount += PHY_OSize
VectorCountPHY ← 0

For each PHY_DSize vectors of
data, PHY_OSize vectors of idles
are added to be deleted

VectorCountFEC = FEC_Dsize +
VectorCountPHY = PHY_DSize

INT_STATE_1

ELSE

UCT

INT_STATE_2

VectorCountPHY = PHY_DSize

UCT

ELSE

PAGE 13 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC DS RX IDLE insertion in CLT (ref. Figure 76-23)

INIT

BEGIN

UCT

FILL_QUEUE

T_TYPE(rx_raw_in) = (C+S+E) &
VectorCount < FIFO_II_SIZE – 1

RECEIVE_VECTOR
FIFO_II[VectorCount] ← rx_raw_in<71:0>
VectorCount ++

ELSE

UCT

Link is not operating,
send error to XGMII

For each received vector of data
(or idle in excess), store the
vector in the FIFO_II queue for
output and increase
VectorCount

In case there are data in the FIFO_II queue, pass
the next vector to the XGMII and shift queue

LBLOCK_TO_XGMII
rx_raw_out<71:0> ← LBLOCK_R

VectorCount = 0 VectorCount != 0

New data arrives

WAIT_FOR_CLOCK

PASS_VECTOR_TO_XGMII
rx_raw_out<71:0> ← FIFO_II[0]

 // shift FIFO forward
FIFO_II[0] ← FIFO_II[1]
FIFO_II[1] ← FIFO_II[2]

…
FIFO_II[VectorCount-2] ← FIFO_II[VectorCount-1]
VectorCount --

UCT

INSERT_IDLE
FIFO_II[VectorCount] ← IDLE_VECTOR
VectorCount ++

UCT

RX_CLK & DUDIRX_CLK & !DUDI

Insert vectors of idles in
the FIFO_II queue to
compensate gaps in
output (gaps are up to a
size of FIFO_II_SIZE)

The same state diagram (see above) can be reused with proper changes of FIFO_II_SIZE:
 FIFO_II_SIZE needs to accommodate the FEC and de-rating for the largest possible gap
 This corresponds to the maximum size frame at lowest coax rate and largest parity

PAGE 14 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC US TX IDLE insertion in CNU (ref. Figure 77-14)
data_tx

is the payload of tx PDU

tailGuard
PDU overhead: preamble, Ethernet
Frame header and IPG

FEC_Derate_Overhead(length)
is a function that calculates the
amount of time that the MPCP
control multiplexer waits following the
transmission of a frame of size
‘length’ for the insertion of FEC parity
bits at PHY and for scaling factor due
to data rate adaption to the coax

CheckGrantSize(length)
is a function that calculates the future
time at which the transmission of the
current frame (including the FEC
parity overhead) is completed

OctetsRemaining
Number of octets that can be
transmitted between the current time
and the end of the grant

TRANSMIT FRAME
MAC:MA_DATA.request(DA, SA, m_sdu_tx)
packet_inititate_delay ← FEC_Derate_Overhead(sizeof(data_tx)+tailGuard

Incoming Data or Control Frame
(see IEEE 802.3-2012, Figure 77-14)

START PACKET INITIATE TIMER

UCT

packet_initiate_timer_done

Back to INIT block
(see IEEE 802.3-2012, Figure 77-14)

Send a frame and signal the
transmission is in progress

CHECK SIZE
OctetsRequired ← CheckGrantSize(sizeof(data_tx)+tailGuard)

Check if the grant is sufficient
for the current packet

Wait to make space for idle
insertion characters for FEC
and for de-rating

OctetsRequired ≤ OctetsRemaining OctetsRequired > OctetsRemaining

Back to INIT block
(see IEEE 802.3av figure 77-14)

[start packet_initiate_timer, packet_initiate_delay]

Note: For the state diagram (slide 9) to work properly, the variable fecOffset shall
advance at the pace of coax transmission rate Rcoax (otherwise it will scroll also
during the time of inserted de-rating IDLEs, which would result in incorrect FEC
calculations – the same may apply to the counter localTime.

PAGE 15 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC US TX IDLE deletion in CNU (ref. Figure 76-10)

In red the change due to de-rating
from the original chart – final format
and proper rounding can be defined
once know PHY parameters

 FEC_PSize vectors of IDLEs are

deleted every (FEC_DSize +
FEC_PSize) vectors

 Enough IDLEs to cover
DelayBound are transmitted

 PHY_OSize vectors of IDLEs are
deleted every (PHY_OSize +
PHY_DSize) vectors

INIT
VectorCountFEC ← 0
VectorCountPHY ← 0
IdleCount ← 0
DelCount ← 0

BEGIN

UCT

DELETE_IDLE
DelCount --

T_TYPE(tx_raw) = (C+E) &
DelCount > 0

SEND_VECTOR
Tx_raw_out<71:0> ← tx_raw<71:0>
VectorCountFEC ++
VectorCountPHY ++

ELSE

ELSE

UCT

Counter for data vectors, idle
vectors and idle deletion are reset

Excessive idles are detected and
deleted, up to the cumulated
number “added for deletion” –
additional idles are treated as dataCLASSIFY_VECTOR_TYPE

UCT

NEXT_VECTOR_READY

RESET_ALIGNMENT
VectorCountFEC ← 2
DelCount ← 0
IdleCount ← DelayBound

IdleCount > DelayBound ELSE

SEND_DATA
IdleCount ← 0

SEND_IDLE
IdleCount ++

T_TYPE(tx_raw) ≠ (C+E)

UCT UCT

Idle to be deleted

Idle to be transmitted (up
to DelayBound for laser
On and OLT RX tuning)

FEC -> Vectors are passed to the output
until the size of information bits for a CW
(FEC_DSize vectors of 72 bits) is reached

De-rating -> For each vector passed to the
output, a number of vectors carrying idles
are added for deletion

UPDATE_COUNTERS_FEC
DelCount += FEC_PSize
VectorCountFEC ← 0 For each FEC_DSize vectors of

data, FEC_PSize vectors of idles
are added to be deleted

UPDATE_COUNTERS_PHY
DelCount += PHY_OSize
VectorCountPHY ← 0

For each PHY_DSize vectors of
data, PHY_OSize vectors of idles
are added to be deleted

VectorCountFEC = FEC_Dsize +
VectorCountPHY = PHY_DSize

INT_STATE_1

ELSE

INT_STATE_2

ELSE

VectorCountFEC = FEC_DSize

VectorCountPHY = PHY_DSize

PAGE 16 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPoC US RX IDLE insertion in CNU (ref. Figure 76-23)

INIT

BEGIN

UCT

FILL_QUEUE

T_TYPE(rx_raw_in) = (C+S+E) &
VectorCount < FIFO_II_SIZE – 1

RECEIVE_VECTOR
FIFO_II[VectorCount] ← rx_raw_in<71:0>
VectorCount ++

ELSE

UCT

Link is not operating,
send error to XGMII

For each received vector of data
(or idle in excess), store the
vector in the FIFO_II queue for
output and increase
VectorCount

In case there are data in the FIFO_II queue, pass
the next vector to the XGMII and shift queue

LBLOCK_TO_XGMII
rx_raw_out<71:0> ← LBLOCK_R

VectorCount = 0 VectorCount != 0

New data arrives

WAIT_FOR_CLOCK

PASS_VECTOR_TO_XGMII
rx_raw_out<71:0> ← FIFO_II[0]

 // shift FIFO forward
FIFO_II[0] ← FIFO_II[1]
FIFO_II[1] ← FIFO_II[2]

…
FIFO_II[VectorCount-2] ← FIFO_II[VectorCount-1]
VectorCount --

UCT

INSERT_IDLE
FIFO_II[VectorCount] ← IDLE_VECTOR
VectorCount ++

UCT

RX_CLK & DUDIRX_CLK & !DUDI

Insert vectors of idles in
the FIFO_II queue to
compensate gaps in
output (gaps are up to a
size of FIFO_II_SIZE)

The same state diagram (see wbove) can be reused with proper changes of FIFO_II_SIZE:
 FIFO_II_SIZE needs to accommodate the FEC and de-rating for the largest possible gap
 This corresponds to the maximum size frame at lowest coax rate and largest parity

PAGE 17 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Reference

[1] IEEE 802.3-2012 Specification – Clauses 76 and 77
[2] IEEE 802.3-2012 Specification – Clause 36

PAGE 18 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

Backup Material (from IEEE 802.3-2012)

PAGE 19 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPON DS TX IDLE insertion (clause 77.2.2.4)

INIT

transmitInProgress ← FALSE
transmitPending ← FALSE

BEGIN

MCI:MA_DATA.request(DA, SA, m_sdu_tx)

UCT

Transmit variables are reset

Add timestamp to control
packets that needs it

Delay transmission till the OLT data detector
finish to send previous parity bits (no packet
transmit during FEC parity)

WAIT FOR TRANSMIT

SelectFrame()
transmitPending ← TRUE

TRANSMIT READY

(transmitEnable = TRUE) & (fecOffset < FEC_PAYLOAD_SIZE)

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

PARSE OPCODE
opcode_tx ← data_tx[0:15]

MARK TIMESTAMP
data_tx[16:47] ← localTime

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

SEND FRAME
transmitInProgress ← TRUE
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

START PACKET INITIATE TIMER
[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Send a frame and signal the
transmission is in progress

Wait to make space for idle
insertion characters for FEC

Key remarks:
 A MAC Control instance

gives back control after
completing transmission

 A transmission includes the
packet and could include
additional space for parity

 The parity is added on a
code word size base (not
necessarily after each
packet), by FEC_Overhead
function

 A packet is delayed till end
of FEC parity transmission
in case popping up outside
FEC payload transmission
(in order to avoid jitter after
timestamp)

PAGE 20 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPON DS TX IDLE insertion - functions

FEC_Overhead(length) = 12 + FEC_PARITY_SIZE * floor[(fecOffset + length)/FEC_PAYLOAD_SIZE]

packet length

FEC parity bits

FEC information bits

fecOffset advances by 1 every 8 bit times.
Variable tracking time passed in octets – start
at 0 and get reset to 0 when reaching code
word size

The function returns the length of the data to transmit and cumulates information bits (tracked by the
variable fecOffset) - when the cumulated data exceeds the FEC_PAYLOAD_SIZE, a
FEC_PARITY_SIZE interval is also included to space for parity

EF-1 EF-2 EF-3 EF-4 P EF-3

time
CW-1 CW-2

P I EF-5 …

Space for FEC parity bits
Data frames

Extra IDLEs (no traffic)

Encoder output timeline

PAGE 21 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPON US TX IDLE insertion (clause 77.2.2.4)
Key remarks:
 Transmission is controlled by GATE

message content, which results in
setting transmitAllowed variable

 A MAC Control instance gives back
control after completing transmission

 A transmission includes the packet
and could include additional space
for parity – two IDLEs blocks are
including in the first CW of a burst

 The parity is added on a code word
size base (not necessarily after each
packet), by FEC_Overhead function

 A packet is delayed till end of FEC
parity transmission in case popping
up outside FEC payload
transmission (in order to avoid jitter
after timestamp)

INIT

BEGIN

transmitAllowed &
MCI:MA_DATA.request(DA, SA, m_sdu_tx)

UCT
Add timestamp to control
packets that needs it

TRANSMIT READY
SelectFrame()

CHECK PACKET TYPE

OctetsRequired ≤ OctetsRemaining

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

PARSE OPCODE
opcode_tx ← data_tx[0:15]

MARK TIMESTAMP
data_tx[16:47] ← localTime

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

TRANSMIT FRAME
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Send a frame and signal the
transmission is in progress

Wait to make space for idle
insertion characters for FEC

START OF GRANT
fecOffset ← 16
grantStart ← FALSE

grantStart & (fecOffset[1:0] = 0)

UCT

!grantStart & (fecOffset <
FEC_PAYLOAD_SIZE)

CHECK SIZE
OctetsRequired ← CheckGrantSize(sizeof(data_tx)+tailGuard)

OctetsRequired > OctetsRemaining

Check if the grant is sufficient
for the current packet

Move into transmit ready state in
case transmitAllowed is TRUE, as
set by GATE processing

At transmit burst start, two blocks of
idles (2x66 bits after line encoding – 16
octets) are included in the first CW

PAGE 22 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPON US TX IDLE insertion - details
data_tx

is the payload of tx PDU

tailGuard
PDU overhead: preamble, Ethernet
Frame header and IPG

FEC_Overhead(length)
is a function that calculates the
amount of time that the MPCP
control multiplexer waits following the
transmission of a frame of size
‘length’ for the insertion of FEC parity
at PHY

CheckGrantSize(length)
is a function that calculates the future
time at which the transmission of the
current frame (including the FEC
parity overhead) is completed

OctetsRemaining
Number of octets that can be
transmitted between the current time
and the end of the grant

TRANSMIT FRAME
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Incoming Data or Control Frame
(see IEEE 802.3av figure 77-14)

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Back to INIT block
(see IEEE 802.3av figure 77-14)

Send a frame and signal the
transmission is in progress

CHECK SIZE
OctetsRequired ← CheckGrantSize(sizeof(data_tx)+tailGuard)

Check if the grant is sufficient
for the current packet

Wait to make space for idle
insertion characters for FEC

OctetsRequired ≤ OctetsRemaining OctetsRequired > OctetsRemaining

Back to INIT block
(see IEEE 802.3av figure 77-14)

PAGE 23 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPON US TX IDLE insertion - functions

CheckGrantSize(length) = FEC_CODEWORD_SIZE *
 ceiling[(fecOffset + length)/FEC_PAYLOAD_SIZE] - fecOffset

packet length
FEC code word bits

FEC information bits
fecOffset advances by 1 every 8 bit times.
Variable tracking time passed in octets – start at 0
and get reset to 0 when reaching code word size

The function returns the future time at which the transmission of the current frame
(including FEC parity overhead) is completed - when the cumulated data (tracked by the
variable fecOffset) exceeds the FEC_PAYLOAD_SIZE, a new FEC Code Word is started

EF-1 EF-2 EF-3 EF-4 P EF-3

time
Code Word 1 Code Word 2

P I EF-5 …

Space for FEC parity bits
Data frames

Extra IDLEs (no traffic)

Encoder output timeline

PAGE 24 IEEE 802.3bn Phoenix, AZ 23-25 January 2013

EPON US TX IDLE insertion – functions (cont.)

OctetsRemaining = [(stopTime – localTime) * tqSize] – tqOffset

Time quanta in bytes
(20 bytes @ 10 Gb/s)

End of grant (from GATE)
expressed in number of TQ

This variable denotes the offset (in
octet times) of the current actual
time from the localTime variable
(which maintain the current time in
units of TQ)

The variable holds the value of the local timer
used to control MPCP operation. This
variable is advanced by a timer at 62.5 MHz
and counts in TQ and it is reloaded at ONU
with the received timestamp value (from
OLT).

OctetsRemaining is a variable that denotes the number of octets that can be
transmitted between the current time and the end of the grant.

	Slide Number 1
	Supporters
	Motivation and Scope
	Background – EPON specification review (DS)
	Background – EPON specification review (US)
	Background – EPON specification review
	Function of IDLE characters in EPON / EPoC
	De-rating – EPoC DS TX IDLE insertion (ref. 77.2.2)
	EPoC DS TX IDLE insertion in CLT (ref. Figure 77-13)
	EPoC DS TX IDLE insertion in CLT - functions
	EPoC DS TX IDLE deletion in CLT
	EPoC DS TX IDLE deletion in CLT (ref. Figure 76-9)
	EPoC DS RX IDLE insertion in CLT (ref. Figure 76-23)
	EPoC US TX IDLE insertion in CNU (ref. Figure 77-14)
	EPoC US TX IDLE deletion in CNU (ref. Figure 76-10)
	EPoC US RX IDLE insertion in CNU (ref. Figure 76-23)
	Reference
	Backup Material (from IEEE 802.3-2012)
	EPON DS TX IDLE insertion (clause 77.2.2.4)
	EPON DS TX IDLE insertion - functions
	EPON US TX IDLE insertion (clause 77.2.2.4)
	EPON US TX IDLE insertion - details
	EPON US TX IDLE insertion - functions
	EPON US TX IDLE insertion – functions (cont.)

