

PROPOSAL FOR PHY SIGNALING

PRESENTED BY AVI KLIGER, BROADCOM

IEEE 802.3bn EPoC, Phoenix, Jan 2013

THREE TYPES OF PHY SIGNALING:

BROADCOM.

PHY Link Channel (PLC)

- Contains:
 - Information required for PHY link up, and details of OFDM channel and the baseline profile
 - Ranging information
 - Timestamps and synchronization information
 - Power management information (specifics TBD)
- Uses dedicated sub-carriers
- Center frequency is a DOCSIS downstream center frequencies (every 6MHz or 8 MHz)

OFDM SYNC ("Preamble")

- Embedded in the PHY Link Channel
- Used for initial OFDM channel detection and acquisition by a new node joining the network

MAC / OAM Messages

- Runs as part of the Data symbols
- New OAM messages may be created, including profile information, upstream management, other OFDM-specific information, etc.

PHY LINK CHANNEL (PLC) AND PREAMBLE

PHY LINK CHANNEL DETAILS

QAM16 constellation

- ~12 dB more robustness to AWGN than QAM256 to protect against bad SNR
- Center frequency is located at one of today's DOCSIS center frequencies (as determined by EIA or other channel plan in use by operator)
- Uses dedicated subcarriers
 - 8, 16, or 32 subcarriers for 20 uSec symbol; 16, 32, or 64 for 40 usec symbol
 - Actual number of subcarriers provided in the PLC data
- Specifics of messages to be sent are controlled by higher layer
 - e.g., higher layer determines how often profile information must be sent, when to insert various sorts of power management or debug messages, etc.
 - New node management
 - Initial Ranging

Downstream OFDM channel (up to 192 MHz)

PREAMBLE - "OFDM SYNC" FOR INITIAL ACQUISITION

- Preamble is sent only on the subcarriers dedicated to the PLC
- Consists of a PN sequence in frequency domain
- 8 symbol preamble duration gives excellent detection at bad SNR
 - Better than 99.9% detection at SNR as low as 10 dB
 - Enables good detection performance with notches or narrowband noise
- Preamble is repeated every 128 OFDM symbols
 - This gives a preamble interval of ~2.75-5.32 mSec for 20u/40u symbols with CP=1.5uS
 - Could use a different number of symbols, but fixed in the spec
 - Tradeoff Preamble latency with PLC throughput overhead
 - Could be aligned with rotating pilot cycle
 - so that pilots do not interrupt preamble
 - Easy Pilots synchronization

IEEE 802.3bn EPoC - Sv

Preamble	Data	Preamble	Data
8 symbols	\sim		
128 symbols (~ 2.75- 5.32 mSec) Size Considerations for EPoC based OFDM PHY, Sep 2012		128 symbols	

INITIAL ACQUISITION SEQUENCE

- Scan designated channel plan (6 MHz or 8 MHz) looking for PLC preamble
 - The sequence below is an example and is implementation dependent
 - 1. Find FFT size and CP size using correlation
 - 2. Find FFT boundaries
 - 3. Find frequency offset
 - 4. Find Preamble
 - 5. Estimate channel using Preamble

All should be accomplished in a single Preamble period on the average

Begin receiving PLC

- First symbol after Preamble include size of PLC and FFT size information
- Decode PLC to find messages describing OFDM channel parameters (center frequency, available sub-carriers, FEC/Interleaving pointers, profile ...)
- Start Admission process and Ranging
- Begin receiving Data

FEC: ~4Kbit LDPC code with ~83% code rate

- This is an example.
- Trade code performance (code rate) with latency to determine FEC

Burst events: No Interleaver needed!

- Since the channel is narrow, a 4Kbit FEC codeword is spread over up to 128 symbols
- A burst event will only affect one to two OFDM symbols
- FEC can readily be designed to correct for this

Ingress, narrowband notches, etc.:

- Ingress is often predictable; locate channel where ingressors are not expected
 - CLT is capable of moving the PLC channel if required
- For narrowband notches (possibly seen by certain modems due to local microreflections), QAM 16 constellation gives an additional 12 dB or more robustness (compared to QAM 256 or higher)
- If this is not adequate, PLC can be duplicated at two different frequencies
- Or, the channel could alternate between two different frequencies, with the same information being sent on both

- With 8 subcarriers (20 usec symbol) and an 83.3% code rate, there are 400 information Bytes between preambles
- PLC data rates range from 1.2 Mbps to 4.8 Mbps (see table)
 - Duplicating data on alternating frequencies (see previous slides) would result in a "half rate" option of 600 kbps
- A single profile descriptor message (describes 128 sub-groups, 16 such messages to cover a complete profile) of 52 bytes would take ~0.35 msec to send using the lowest-rate option
 - ... or ~5.6 msec for a full profile description
 - ... or ~1.3 msec using the highest-rate option

PLC Data R	ate, Mbps	(83.3% FE	C, 2.5 uSec	CP)
Symbol size	Number of subcarriers			
(uSec)	8	16	32	64
20	1.2	2.4	4.7	
40		1.3	2.5	5.0

profile descriptor message	
Number of subgroups per	
message	128
Header (bits)	8
CRC (bits)	16
FEC (bits)	4
Bit loading (bits)	384
Subgroups Identifier (bits)	4
Total (Byte)	52

PREAMBLE DETECTION PERFORMANCE AND SCANNING TIMES

Scanning time is implementation dependent

- Could tune to a single or multifrequencies simultaneously
- A single cycle to discover FFT size and CP size and Preamble detecting should take one Preamble period on the average

Preamble detection performance

- Preamble is a repetition of a PN sequence in the frequency domain
- Detection probability vs. SNR with different numbers of symbols and subcarriers were simulated
- Results depicted in table below

Number of symbols with 99.9% Preambles detection

Num of sub	Numer of symbols			
carriers	10	15	25	
32	6	4	4	
16	4	4	4	
8	8	6	4	

POWER MANAGEMENT

- CNU can request to enter "light sleep" mode
- It is up to the CLT to move a CNU into "light sleep" mode
 - Either per request from CNU or initiated by CLT
- Data to the sleeping nodes is sent over the baseline profile
 - Unicast and broadcast user data packets
 - Unicast OAMs
 - Running on the data subcarriers of the OFDM channel
- The PLC is used to carry power management messages (specifics TBD) indicating that a Data is coming over the data channel
 - This will need to be sent some amount of time (TBD) in advance
 - Example: wake-up message x*10 msec in advance for Data recurring every 200 msec
- Power management messages on the PLC may be transmitted periodically or intermittently to allow the CNU to sleep between messages

