

MPCP IN EPOC

Ryan Hirth, Glen Kramer, Leo Montreuil, Avi Kliger

TQ is 16ns

The bits per TQ will vary based on FEC and rate.

The 10G EPON MAC operates at 10Gbps

- REPORT frames
 - Report queue lengths are at 20Bytes per TQ
- GATE frames
 - Enable transmission for Grant Length * TQ
 - The number of Bytes transmitted is based on the IDLE insertion rate

The Ethernet MAC uses IDLE insertion to adapt data rates

- 802.3 adjusts for MAC to PCS rate differences by increasing the inter-frame gap
- EPON uses IDLE insertion to account for optical FEC overhead.
 - maintains MPCP timestamp alignment
- EPoC should use this method to account for FEC overhead and data rate.
- EPoC PCS removes the IDLEs to meet the PMD data rate.

SEMANTICS OF EXISTING GATE

BROADCOM.

- GATE tells the ONU for how long it can "occupy" the PON.
 - OLT time GATE = {*start_time*, *length*} Upstream transmission ONU time start_time length Don't Don't Do transmit transmit transmit here! here! here!
- ONU may decide how efficient or inefficient it wants to be within the allocated grant time.
- But ONU can never step outside the grant boundaries, because this will cause collision with other ONUs and impact services of other users.
- Collision-less transmission is arbitrated without OLT's knowledge of ONU's data rate, overhead, etc.

- If the GATE length parameter represents the net amount of data to be transmitted, then the OLT should have the exact knowledge of ONU's data rate (or transmission overhead).
- If the data rate or the overhead can change dynamically, or if OLT's knowledge becomes miss-synchronized with ONU 2 the actual ONU state, data collisions may happen.

The CLT should be responsible for adding in FEC overhead

- Same method as 10G EPON standard
- Grant lengths are not required to equal reported queue length
- The CLT can modify the Grant Length to adjust for FEC, rate, and overhead
- DBA translates the Report Length to Grant Length
 - The DBA function is out of scope of IEEE 802.3
 - An optimized DBA can utilize the ONU IDLE insertion function to convert the Queue Length to an equivalent Grant Length

The CNUs MAC will enable transmission for the period of time in the Grant Length

- The MAC will insert IDLEs on each frame
- This follows the same structure already defined in the EPON MAC
 - The IDLE insertion function will need to be updated with an EPoC FEC/Rate/Overhead formula

- The CLT may assign the Grant Start Time to any MPCP value
 - The CNU data detector must align TX enable to Resource Blocks
 - The first RB will be filled with IDLE until the first packet.
 - The last RB will be filled with IDLE after the end of last packet.
 - The number of RBs used for a given grant length may vary based on the bit loading
 - Grant Start Times are not aligned to RBs
 - The MAC and MAC Control layers are not aware of PMA alignment.

MPCP JITTER

EPON defines

- Downstream jitter is 8TQ
- Upstream jitter is 12TQ

The start of the MAC DA is the timing reference point

- The MPCP is generated at the MAC Control (above FEC)
- The PMA must de-jitter overhead due to FEC Parity

MPCP tracks byte times across the PMA

- MPCP time will vary across different bit loadings (not track 'wall' time)
- Each byte within an RB maps to an MPCP time (from MAC post Idle deletion).
- The PMA will insert idles to realign MPCP to 'wall' time at the receiver.
- Mean bit rate can be used in the Idle Insertion function simplifying the calculation.

Move that EPoC shall follow the same MPCP method as 10G EPON(IEEE 802.3av).

- Gate messages shall set the length of the grant with a grant length of 16ns/TQ.
- The Grant Length shall be inclusive of grant overhead.
- Report messages use 20B/TQ for queue lengths and not include overhead.
- The IDLE insertion formula shall be modified to include the EPoC PMA overheads.
- Moved by:
- Seconded by: