2-D Marker Sequences

Leo Montreuil, Broadcom

Avi Kliger, Broadcom 22 January 2014

Supporters

- Syed Rahman, Huawei
- Hesham ElBakoury, Huawei

Introduction

- Burst Markers (BM) indicate start and end of an upstream OFDMA burst.
- Usage:
- Length of burst
- Number of LDPC codeword and type (long, medium, short)
- Profiles

Assumptions

- BM are transmitted after ranging and are pre-equalized
- First element of BM is time aligned with RB. BM search is in frequency direction, down to the RB.
- RB are 1,4 or 8 subcarriers by M symbols. $\mathrm{M}>=4$
- BM can span across multiple RB (to allow BM larger than one RB).
- BM can span across OFDMA frame (needed when BM is larger than one RB).
- End and Start BM are usually separated by one or more RB of silence (idle)
- Not for BM detection but to prevent collision from time granularity of the 1-D to 2-D mapping
- BM detection must not be impaired by idle

2-D Marker Sequences Properties

- Exploit the 2-D structure of OFDMA
- K subcarriers by L symbols
- Ternary signaling, $\mathrm{P}=-1$ or $1, \mathrm{~N}=0$
- Ease the differentiation of BM from data
$-N$ in the BM allow boosting of P without increasing total output power
- Good auto-correlation and cross-correlation for a large set of sequences

2-D Marker Sequences Properties

- Detection is by power averaging of " P " and " N " at the assumed locations
- Additional information can be carried by the BPSK "P" symbols like:
- Start
- End
- Profile
- Idle RB between BM could be used to differentiate between Start and End BM at RX
- Square $B M$: $K=L$, where K is an even integer
- K/2 Nulls RE in each row and column

2-D Marker Sequences Properties

- Non square BM: $\mathrm{K}=\mathrm{L}-1$, where K is an odd integer
- $(K+1) / 2$ Nulls in each row
- (K-1)/2 or ($\mathrm{K}+1$)/2 Nulls in each column
- Logical NOT ($\mathrm{P} \rightarrow \mathrm{N}, \mathrm{N} \rightarrow \mathrm{P}$) of a sequence is an orthogonal sequence to the original sequence.
- Many sequences with good auto-correlation to choose from:
$-4 \times 4 \rightarrow 8$ sequences
$-5 \times 6 \rightarrow 10080$ sequences
$-6 x 6 \rightarrow 64$ sequences
$-8 \times 8 \rightarrow 256$ sequences

Interleaving

- 2-D Burst Marker sequences can be interleaved with the data if the 2-D structure is kept intact
- Examples of $4 \times 4 \mathrm{BM}$ interleaving:

0	$D P$	1	$D P$	0	$D P$	1	$D P$
$D P$	1	$D P$	0	$D P$	1	$D P$	0
0	$D P$	1	$D P$	1	$D P$	0	$D P$
$D P$	1	$D P$	0	$D P$	0	$D P$	1
$D P$							
$D P$							
$D P$							
$D P$							

Time

0	$D P$	1	$D P$	0	$D P$	1	$D P$
$D P$							
$D P$	1	$D P$	0	$D P$	1	$D P$	0
D	D	D	D		D		
D	$D P$						
0	$D P$	1	$D P$	1	$D P$	0	$D P$
$D P$							
$D P$	1	$D P$	0	$D P$	0	$D P$	1
$D P$							

Time \& Frequency

0	1	0	1	$D P$	$D P$	$D P$	$D P$
$D P$							
1	0	1	0	$D P$	$D P$	$D P$	$D P$
$D P$							
0	1	1	0	$D P$	$D P$	$D P$	$D P$
$D P$							
1	0	0	1	$D P$	$D P$	$D P$	$D P$
$D P$							

Frequency
" 1 " is location of BPSK (P), " 0 " is location of Nulls (N), "DP" is Data or Pilot RB are shown with lowest frequency at top, highest at bottom

2-D BURST MARKER SEQUENCE EXAMPLES AND CORRELATION

2-D 4X4 Sequences

0	1	0	1
1	0	1	0
0	1	1	0
1	0	0	1

BM4x4_1

1	0	0	1
0	1	1	0
0	1	0	1
1	0	1	0

BM4x4_5

0	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0

BM4x4_2

0	1	1	0
1	0	0	1
0	1	0	1
1	0	1	0

BM4x4_3

0	1	1	0
1	0	0	1
1	0	1	0
0	1	0	1

BM4x4_4

1	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
BM4x4_7			

1	0	1	0	
0	1	0	1	
1	0	0	1	
0	1	1	0	
BM4x4_8				

" 1 " is location of BPSK (P), " 0 " is location of Nulls (N)

2-D 4x4 Sequence Correlation

Mis and False Detection vs Threshold, BM $4 \times 4(8 N, 8 P), S N R=10 d B$

IEEE 802.3bn, Indian Wells, 2014 January 22-24

2-D 6X6 Sequences (5 out of 64)

0	0	1	1	1	0
1	1	0	0	0	1
0	1	0	1	0	1
1	0	1	0	0	1
0	1	1	0	1	0
1	0	0	1	1	0
BM6x6_1					

1	1	0	0	0	1
0	0	1	1	1	0
1	0	1	0	1	0
0	1	0	1	1	0
1	0	0	1	0	1
0	1	1	0	0	1
BM6x6_64					

0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	0	1
1	0	1	0	1	0
0	1	0	1	1	0
0	1	1	0	0	1
BM6x6_25					

1	0	0	0	1	1
0	1	1	1	0	0
0	1	1	0	0	1
0	1	0	1	1	0
1	0	1	0	1	0
1	0	0	1	0	1
BM6x6_38					

1	1	0	0	0	1
0	0	1	1	1	0
0	1	0	1	1	0
1	0	1	0	1	0
0	1	1	0	0	1
1	0	0	1	0	1
BM6x6_57					

" 1 " is location of BPSK (P), " 0 " is location of Nulls (N)

2-D 6x6 Sequence Correlation

BM6x6_1 to BM6x6_25

BM 4x3

Data and Idle prior and after BM

Mis and False Detection vs Threshold, BM 6x6 (18N,18P), SNR=10dB

2-D 8X8 Sequences (5 out of 256)

0	0	1	1	1	0	1	0
1	1	0	0	0	0	1	1
0	1	0	1	1	1	0	0
1	0	1	0	0	1	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	0	1	1	0	0	1
0	1	1	0	1	0	1	0
BM8x8_1							

1	1	0	0	0	1	0	1
0	0	1	1	1	1	0	0
1	0	1	0	0	0	1	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	0	1	0	0	1
0	1	1	0	0	1	1	0
1	0	0	1	0	1	0	1
BM8x8_64							

0	1	0	1	1	0	1	0
1	0	1	0	0	0	1	1
0	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1
1	0	0	1	0	1	0	1
0	1	1	0	1	0	0	1
0	1	1	0	0	1	1	0
1	0	0	1	1	0	1	0
BM8x8_16							

0	1	1	0	0	1	0	1
1	0	0	1	1	0	0	1
1	0	0	1	0	1	1	0
0	1	1	0	1	0	1	0
0	1	0	1	1	0	1	0
1	0	1	0	0	0	1	1
0	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1

BM8x9_28

1	0	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	0	1	0	0	1
1	0	0	1	1	0	1	0
0	0	1	1	1	0	1	0
1	1	0	0	0	0	1	1
0	1	0	1	1	1	0	0
1	0	1	0	0	1	0	1

BM8x8_33

2-D 6x6 Sequence Correlation

8x8 2-D Auto-Correlation

Mis and False Detection vs Threshold, BM 8x8 (32N,32P), SNR=10dB

2-D 5X6 Sequences (4 out of 10080)

1	0	0	1	0	1
1	1	0	0	1	0
0	1	1	0	0	1
0	1	1	1	0	0
1	0	0	0	1	1
BM5x6_6004					

0	0	1	1	1	0
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	0	1	1
0	1	1	1	0	0
BM5x6_1590					

0	0	1	0	1	1
1	1	0	0	0	1
1	0	0	1	1	0
1	0	1	1	0	0
0	1	0	0	1	1
BM5x6_757					

0	1	0	1	0	1
1	1	1	0	0	0
0	0	1	1	1	0
0	0	1	0	1	1
1	1	0	1	0	0
BM5x6_3004					

2-D 5x6 Sequence Correlation

Conclusion

- 2-D BM sequences exploit the 2-D OFDMA modulation structure to improve contrast for search of BM
- Equal number of P and N is optimal to minimize misdetection and false detection rate
- Equal number of P and N allow 3 dB boosting to further improve robustness
- 2-D BM sequences are suitable for RB of 1 subcarrier RB

