
Symbol Mapper Overview

The details here are for expression of the operation of the standard and do not imply any specific
implementation.

The US symbol mapper consists of an idle loop process and a fill process. The idle loop process is
initialized when the upstream profile is configured and set to align with the start of the superframe. The
main task of the idle loop consists of two tasks 1) walk through all data bits in all data carrying resource
elements at the clock rate established by US_DataRate (see 100.x.x.x.), and 2) upon an assertion of the
start of a burst from the PMA Client, launch the fill process using the resource block that is at the
current walk point. This includes placing the start burst marker elements, filling bits in data resource
elements and low density pilots as specified, creating the QAM map for the fill word bits, sensing the
endBurst notification, padding to the end of the current resource block, encoding and placing the end
burst marker elements and then terminating. The idle loop is a continuous loop. The fill process is
meant to be launched and then terminate after the end marker is placed. During the idle walk and fill
processes, two-dimensional arrays (resource block size by total subcarriers) termed RB Frames are
allocated and passed to the staging process when complete. RB Frames initially consist of null values.
Non-null values are inserted by the fill process when mapping burst markers and filling data resource
elements, and when later processed by the Pilot Insert process fill “P” type pilots patterns (see
101.x.x.x.). Null resource blocks produce no energy on the corresponding OFDMA subcarrier after the
IDFT process.

The variables and functions in this subsection are shared between the idle process and the fill process.

Variables

RB_Size
Type: integer
This variable represents the current setting of the Resource Block size for this Superframe
(profile) configuration. The value is either 8 or 16. RB_Size also corresponds to the interleaver
depth.

RB_Frame<4095:0, RB_Size:1>
Type: Array of I_value and Q_value bin value pairs
This two-dimensional array holds the I and Q QAM symbol bin values that are passed from the
symbol mapper to the staging function, then to the IDFT for transmission by the CNU. When
first allocated, RB_Frame contains null values (“0”) in all I and Q values. I and Q bin values are
signed 16-bit integers. Index 4095:0 represents the total number of possible subcarriers in the
upstream corresponding OFDMA channel, RB_Size:1 represents the number of resource
elements in resource block. Subcarrier 0, RB number 1 (RB_Frame<0,1>) is reserved for special
use in coordinating symbol mapper idle and fill processing: I_value of “0” indicates the
RB_Frame has not transferred to the staging process, I_value of “1” indicates the RB_Frame has
been passed to the stating process, Q_value is always “0”.

RB_Type<4095:0>

Type: array of enumerated values
This array defines the use of each resource block, the values and descriptions are:
“Null”: the resource block is unused, all resource elements will contain null I and Q value pairs.
“T0”: resource block in use, Type 0 pilot pattern (see 101.4.4.7)
“T1”: resource block in use, Type 1 pilot pattern (see 101.4.4.7)
“T2”: resource block in use, Type 2 pilot pattern (see 101.4.4.7)
“SM”: resource block in use, contains a start marker pattern
“EM”: resource block in use, contains an end marker pattern
All other enumerated type values are reserved. The use of this array indicates the availability
and type of each used resource block to the interleaver. A null resource block array element
produces no energy output from the IDFT for the corresponding OFDMA subcarrier.

PILOT_MAP<4095:0>
Type: array of enumerate values
This array defines the pilot pattern use for Type 1 and Type 2 pilot patterns as defined in the
upstream profile descriptor (see section 101.x.x.x). The pilot pattern is fixed for the Superframe
configuration and remains constant. The enumerated type values are:
“Null”: no Type 1 or Type 2 pattern is configured for this subcarrier
“T0”: this resource block, if used for data, will contains a Type 0 pattern (see 101.4.4.7)
“T1”: this resource block, if used for data, will contains a Type 1 pattern (see 101.4.4.7)
“T2”: this resource block, if used for data, will contains a Type 2 pattern(see 101.4.4.7)
“PHYLINK”: this resource block is reserved for use by the PHY Link
All other enumerated type values are reserved. For any used resource element containing data
and not containing either a start or end burst marker, this value will be used to set the RB_Type
array element value for further processing by the interleaver and pilot insertion functions.

IRB
Type: integer
This variable is used to determine the current resource block being processed in the idle
process. The range of values if from -1 to 4095.

IRE

Type: integer
This variable is used to determine the current resource element being processed in the idle
process. The range of values if from 0 to RB_Size.

FILL_STATE:
Type: enumerated
This variable is used to coordinate filling actions by the symbol mapper filling process. The
enumerated types are:
“IDLE”: the symbol mapper is in the idle loop
“FILL”: a start of burst indication has been presented via the PMA service interface and the
symbol mapper is in the fill process.
“end”: an end of burst indication has been presented via the PMA service interface and the
symbol mapper is padding any remain bits to the end of the current resource block and
preparing to place an encoded end burst marker.

LBIT

Type: integer
This variable records the last bit filled in the current data resource element (QAM symbol)
before mapping. The value can be from 1 to 16, where 1 represents the LSB. The value is set to
the bit loading for the data RE and then decremented during the symbol mapper fill process for
mapping data burst bits to the current data resource element. This value is reset for each new
data resource element being filled. The value is incremented while filling bits and stops
incrementing upon receiving an end of burst indication. This value is not incremented or reset
when placing padding bits.

LRE
Type: integer
This variable records the last filled data resource element in the current resource block. The
value can be from 1 to 16, where 1 represents the first resource element in the resource block
(in time) and up to 8 or 16 representing the last resource element in the resource block (later in
time). The value is reset for each new resource block being filled. The value is incremented to
the current data resource element being filled and stops incrementing upon receiving an end of
burst indication. This value is not incremented or reset when placing padding bits.

IDLEBITS
Type: integer
This variable is used by the idle loop to increment through the bit loading of the current data
carry resource element.

ICLK

Type: clock
This variable represents a clock running at US_DataRate (see 100.x.x.x).

ASSERTPMA
Type: boolean
This variable a signal that the PMA client has asserted a PMA_UNITDATA.request for processing
by the PMA.

FRB
Type: integer
This variable is used to determine the current resource block being processed in the fill process.
The range of values if from 0 to 4095.

FRE

Type: integer
This variable is used to determine the current resource element being processed in the fill
process. The range of values if from -1 to RB_Size.

FIRST
Type: boolean
This Boolean is used within the fill process to indicate status of placing the firstbit passed in the
function call. If TRUE, the passed firstbit is used, otherwise the bit receive from the processed
PMA_UNITDATA.request() is used.

END
Type: enumerated type
This variable that ends the end state processing of the fill process, where
“FALSE” indicates a burstStart = TRUE has not been received from received
PMA_UNITDATA.request() primitive.
“PAD” indicates burstStart = TRUE has been received and the fill process is padding bits to the
end of the current RB
“TRUE” indicates that the fill process has reached the end of the last RB while padding.

FILLWORD<16:1>
Type: integer array
This variable is a bit array that stages the bits to fill a resource element prior to mapping to QAM
symbols.

BITPOS
Type: integer
This is an integer used by the fill process to indicate the current bit position being filled in
FILLWORD<>.

Functions

initialize_Pilot_Map()
This function initializes the PILOT_MAP<> array based on the profile descriptor information for
placing Type 1 and Type 2 patterns. See Table 101-1 and 101.4.4.7.

allocate_RB_Frame(RB_Frame, RB_Type)

This function allocates a new RB_Frame array with all I_value and Q_value bin pairs set to null
“0” and a new RB_Type array with all enumerations set to “Null”.

next_RE(resource_element, resource_block)
This function increments to the next usable data carry resource element starting from the
passed resource_element number in the passed resource_block. This includes data carry
resource elements and low density pilots, pilot resource elements are skipped. See 101.4.4.7.
The resource element is returned and may have a value from 1 to RB_Size. If resource_element
has a value of -1, this function increments to the next resource block and begins with the first
useable resource element .

This function will first increment to the next usable resource element in the current resource
block. If necessary, this function will increment to the next data carrying resource block (e.g.
Type 0, 1, or 2). The resource block number (subcarrier index) from 0 to 4095 is returned in
resource_block. For this function, let “RB” be the resource block number.

When advancing to the next RB and FILL_STATE = FILL, the value from Pilot_Map<resource
block> sets the value of RB_Type<resource block>.

If at any time this function increments beyond the last usable resource block in the current
RB_Frame (highest usable subcarrier configured in the profile descriptor), It examines the
I_value of RB_Frame<0,1>. If “0”, this function sets the value to “1” and passes the RB_Frame
array and RB_Type array to the staging function and allocates a new RB_Frame array and
RB_Type array (allocate_RB_Frame(), RB_Type()).If I_value of RB_Frame<0,1> is “1”, skips
passing to staging and allocations, assume a new RB_Frame has been allocated, and increments
to the first data carrying resource block and resource element in the new RB Frame.

Upon return, the updated resource element index is returned via resource_element, and the
current resource block index returned via resource_block.

BITLOAD(resource_element)
This function returns the current bit loading capacity of the current data carrying resource
element or low density pilot.

Launch “process”

This function causes the indicated process to being execution. This function returns
immediately.

FILL_PROCESS(FIRSTRB, FIRSTBIT)

This function calls the fill process to begin execution, at the resource block indicated by FIRSTRB
index, with the FIRSTBIT indicating the first bit to be filled in MSB of the first available data
resource element. See Figure 101.x.x.x.

Map_Start_Marker (RB_number)
This function begins by placing the first resource block of a start burst marker in the current
resource block RB_number, according to the RB_Size of the Superframe (see 101.x.x.x). This
function continues to increment resource blocks (subcarriers) and placing the remaining start
burst marker elements in the next usable resource block(s) as indicated in US modulation type
setting in the US profile descriptor (defined as a US modulation type value from binary 0001
(BPSK) to binary 1110 (16384-QAM) and not being used by the PHY Link). See 45.2.7a.2 and
Table 45–191c. Excluded subcarriers and null subcarriers are skipped. After placing the last
start burst marker resource block, this function returns the value of the current start maker in
RB_number.

For each resource block used for a start burst marker element, the corresponding entry in the
RB_Type<RB_number> array is set to “SM”. The next usable resource block is defined as a US
modulation type value from binary 0001 (BPSK) to binary 1110 (16384-QAM) and not being used
by the PHY Link.

If at any time this function increments beyond the last usable resource block in the current
RB_Frame (highest usable subcarrier configured in the profile descriptor), It examines the
I_value of RB_Frame<0,1>. If “0”, this function sets the value to “1” and passes the RB_Frame
array and RB_Type array to the staging function and allocates a new RB_Frame array and
RB_Type array (allocate_RB_Frame(), RB_Type()). If I_value of RB_Frame<0,1> is “1”, skips
passing to staging and allocations, assume a new RB_Frame has been allocated, and increments
to the first data carrying resource block and resource element in the new RB Frame.

reset_scrambler()

This function initializes the bit scrambler with the seed value. See 101.4.3.6.4.

scramble(bit)
This function provides a bit scrambler, local to the upstream data symbol mapper function. The
passed bit is used as input to the scrambler, the output is used as the return value. See
101.4.3.6.4.

Map_End_Marker (RB_number, Last_Bit, Last_RE)

This function starts at the current RB_number. This function then constructs the end burst
marker by encoding the Last_Bit and Last_RE information. See 101.x.x.x and 101.x.x.x for end
marker encoding. This function then place an end burst marker elements in the resource block
according to the RB_Size of the Superframe. This function continues to increment resource
blocks (subcarriers) and placing the remaining end burst marker elements in the next usable
resource block as indicated in US modulation type setting in the US profile descriptor. See
45.2.7a.2 and Table 45–191c. For each resource block used for an end burst marker element,
the corresponding entry in the RB_Type array is set to “EM”. Excluded subcarriers and null
subcarriers are skipped. The next usable resource block is defined as a US modulation type
value from binary 0001 (BPSK) to binary 1110 (16384-QAM) and not being used by the PHY Link.

If at any time this function increments beyond the last usable resource block in the current
RB_Frame (highest usable subcarrier configured in the profile descriptor), It examines the
I_value of RB_Frame<0,1>. If “0”, this function sets the value to “1” and passes the RB_Frame
array and RB_Type array to the staging function and allocates a new RB_Frame array and
RB_Type array (allocate_RB_Frame(), RB_Type()). If I_value of RB_Frame<0,1> is “1”, skips
passing to staging and allocations, assume a new RB_Frame has been allocated, and increments
to the first data carrying resource block and resource element in the new RB Frame.

stage_RB_Frame(RB_Frame, RB_Type)

This function examines the I_value of RB_Frame<0,1>. If “0”, this function sets the value to “1”
and passes the RB_Frame array and RB_Type array to the staging function. If I_value of
RB_Frame<0,1> is “1”, this function simple returns.

Map_to_QAM(resource_block, resource_element , FILLWORD<>, FILLBITS)

This function maps the bits in FILLWORD<> into the I and Q bin value pairs for the current
resource element in the current resource_block in RB_Frame<> (see 101.4.5). FILLBITS
represents the bitloading of the current data resource element or low density pilot, where
FILLWORD<FILLBITS> represents the MSG and FILLWORD<1> represents the LSB for the
mapping.

IF RB_Type<resource_block> is NULL, this functions sets RB_Type<resource_block) to
PILOT_MAP<resource_block> to indicate this resource block contains non-null values.

Idle Loop State Diagram

BEGIN

WAIT_FOR_RESET_SUPERFRAME
IRE ⇐ 1
IRB ⇐ -1
FILL_STATE⇐ IDLE
Allocate_RB_Frame(RB_Frame<>, RB_Type<>))
Initialize_Pilot_Map(PILOT_MAP<>)

UCT

FIND_NEXT_RE
NEXT_RE(IRE, IRB)
IDLEBITS = BITLOAD(IRE)

UCT

ICLK

IDLE_BITS

IDLEBITS --

IDLEBITS > 0

ASSERTPMA

TEST_FOR_PMA_ASSERT

UCT

IDLEBITS = 0

CHECK_FILL_STATUS

!ASSERTPMA

FILL_STATE = FILL FILL_STATE = IDLE

START_FILL_PROCESS

Receive PMA_UNITDATA.request(First_Bit, startBurst, endBurst)
Launch FILL_PROCESS(IRB, First_Bit)
FILL_STATE ⇐ FILL

CHECK_RE_DONE

UCT

Fill Process State Diagram

BEGIN

Input FIRST_RB
Input FIRST_BIT

UCT

INIT
reset_scrambler()
FIRST ⇐ TRUE
END ⇐ FALSE
FRE ⇐ FALSE
END ⇐ FALSE

PLACE_END_MARKER

LRE ⇐ LRE - 1
LRB ⇐ LRB - 1
Map_End_Marker(FRB, LRE, LBIT)
FILL_STATE ⇐ IDLE

PLACE_START_MARKER
FRB ⇐ FIRST_RB
FRE ⇐ -1
Map_Start_Marker(FRB)

UCT

FILL_NEXT_RE
If FRB = RB_Size AND END = PAD

END ⇐ TRUE
NEXT_RE(FRE, FRB)
FILLBITS = BITLOAD(FRE)
BITPOS ⇐ FILLBITS
FIRST_RE ⇐ FALSE
If FRE = 1 AND RB_Type<FRB> = “T0”

FIRST_RE ⇐ TRUE
If FRE = 2 AND (RB_TYPE<FRB> = “T1” OR RB_Type<FRB> = “T2”)

FIRST_RE ⇐ TRUE

FILL_BITS

If FIRST = TRUE
FBIT ⇐ FIRST_BIT
FIRST ⇐ FALSE

Else
Receive PMA_UNITDATA.request(FBIT, burstStart, burstEnd)

If END = FALSE
FillWord<BITPOS> ⇐ scramble(FBIT)
LBIT ⇐ BITPOS
LRE ⇐ FRE

Else
FillWord<BITPOS> ⇐ scramble(0)

If burstEnd = TRUE
END ⇐ PAD

BITPOS--

UCT

BITPOS > 0 BITPOS = 0

FIRST_RE = FALSE
OR
FIRST_RE = TRUE *
END = PAD

FIRST_RE = TRUE *
END = TRUE

MAP_BITS

Map_to_QAM(FRB, FRE, FillWord<>, FILLBITS)

UCT

EXIT

UCT

