EPoC FEC for Passive Coax Plants

Christian Pietsch (Qualcomm) Stefan Brueck (Qualcomm)

Geneva

1

Introduction and Scope

 During the Victoria meeting it was agreed to specify two sets of LDPC codes (prodan_3bn_01_0513.pdf):

- One code set for passive plants
- One code set for active plants
- This presentation specifies the LDPC codes for passive plants.

2

Codes Parameters and Deployment Scenarios

CODES	Rate	Length
А	$R_{A} = 8/9$	16200
В	$R_{B} = 8/9$	16200
С	$R_{\rm C} = 0.848$	5940
D	$R_{\rm D} = 3/4$	1120
Е	$R_{E} = 41/46$	16560
F	$R_{F} = 26/30$	10800
G	$R_{G} = 13/15$	5400
Н	$R_{\rm H} = 3/4$	960

DEPLOYMENT	Passive plant	Active plant
US, low band	F, G, H	B, C, D
DS, low band	E, F, G, H	
US, high band	E, F, G, H	
DS, high band	E, F, G, H	А

Code Description

- All LDPC codes for passive plants are quasi-cyclic and binary
- The matrix M to calculate the parity bits has nearly upper diagonal form for all codes
 - Only the first sub-diagonal of the matrix M is non-zero
 - The parity matrices H are constructed so that encoding can be realized with low complexity
- In the following slides the parity check matrices H of the LDPC codes are given
- Description
 - In all tables the top row indexes columns of the parity check matrix
 - The second row of the tables indicates information (1) and parity (0) columns
 - The third row of the tables indicates transmitted columns (1) and punctured columns (0)

Parity Matrices for Codes E and F

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0 0	61 61	203 113		•	188	278 268	: 330	319	313 106	: 142	250	153	-	56	308 283	248 32	206	142 202	25	309 279	225 282	355	257 284 132	99	132	71 203	113 129	99 26	: 347	42 130	173 74	303 194 181	287 352	129 84	19	294 293	197 307 353	126 212	359 309	308 265	257 233 199	342	113 274	: 303	318	109 318 210
-	•	113	183 183	244 244	302 189	45	89 352	221 118	153	349 105	5 59	334 301	256 331 340	269 99	267	: 122	208 194	61	240 237	155	40	36 213	-	194 159	142 86	248	352	182	123 51	51	163	151	191 339	1 225	147 107 326	288 54	91	109 147	18 170	122 254	333	152 75 7	225 198	275 111 110	42 200 300	142 116 35

Figure 8: Base code information bits: 41; (max) block length: 46. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
18	3 90			160	295	-	-	268	240	182	127	-	187			179	288		167	14	327	96	•	215	359		-	273	344	261
18	30				276	291			58	308	348	286		4	93			171			•	207	54	190	352	309	34	223	84	62
· ·	0	61				184	160	212	235				256		39	191	236	303	324		•		292		83	132	189	224	251	142
		61	122	351		344	51				267	122		284	341	94	335			256	194	270		240	127	351	234		202	228
· ·			122	175	104		206	42		91		198	329	266				284	269	73	192		93	1		220	197	44		266

Figure 4: Base code information bits: 26; (max) block length: 30. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Codes G and H

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0			45		92	28		137	111	344	2	338	190	258	328	13
0	$241 \\ 241$	122	119	$284 \\ 171$	17	244	$\frac{186}{303}$	218	$\frac{198}{356}$	$\frac{185}{258}$	$\frac{334}{53}$	76 181	$\frac{148}{330}$	$236 \\ 271$	93 279	$\frac{190}{150}$
Ŀ		122	0	287	36	135	84	72	245	208	303	239	124	176	284	121

Figure 2: Base code information bits: 13; (max) block length: 15. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

ΓO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	16			21	9			33	44			15	40	4	56	47
0	1						12	39	42	40	2		54	33	32	12
•	1	32			4	46	50			44	7	43	47	23		48
		32	3	34		44	58	8			54	14	4		43	26
· ·			3	27	43	41			38	56	20	20		13	16	10

Figure 1: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 60

Edge Density, Parity Checks and Lifting Size

Base n	Base k	Rate	Lifting Z	Information Bits	Code word length	Parity checks	Based edges	Edge density
46	11	0 2012	360	14760	16560	2160	154	2 2 4 9
40	41	0.0913	300	14700	10300	2100	154	3.340
30	26	0.8667	360	9360	10800	1800	98	3.267
15	13	0.8667	360	4680	5400	1080 (1440)	54 (56)	3.6 (3.73)
16	12	0.75	60	720	960	300	53	3.3125

7

LDPC Decoder Assumptions

- Sum product decoder
- Flooding schedule
 - No layered iterations are applied
- The maximal number of iterations is set to 20 or 30, respectively
 - In the hardware implementation, layered iterations would be applied
 - This allows reducing the number of iterations roughly by 50%
 - Since the implementation and performance of a layered schedule is LDPC code specific, it is not used for code comparison
- Simulation methodology according to prodan_3bn_02_0313.pdf

Performance Result: AWGN – 20 Decoder Iterations – BER

IEEE 802.3bn

Geneva

Performance Result: AWGN – 30 Decoder Iterations – BER

IEEE 802.3bn

Geneva

July 15-18, 2013 10

Performance Result: AWGN – 20 Decoder Iterations – FER

IEEE 802.3bn

Geneva

July 15-18, 2013 11

Performance Result: AWGN – 30 Decoder Iterations – FER

IEEE 802.3bn

Geneva

thank you