Updates on 802.3bn
 EPoC Upstream Pilot Proposal

Avi Kliger, Leo Montreuil

Broadcom

Resource Block Rules

- RB types are fixed in frequency and set during configuration
- All RBs have a single subcarrier and the same length of 8,12 or 16 symbols for the entire OFDMA spectrum
- Any change in configuration (type or length) requires a restart
- RBs are configured with a RB type and bit loading

RB Types and Pilot Patterns

- Three types of RBs
- Type 0 - RB does not include pilots
- Type 1 - RB includes two pilots
- Type 2 - RB includes two pilots and two low-density data subcarriers ("LD pilots")
- LD density is four bits lower than data density or QPSK, the largest of the two.

RB Type 1
Two pilots on the first and third symbols

RB Type 2
Two pilots on the first and third symbols and two LD pilots on last and second to last symbols

Bursts Rules

- A Burst must start with a type-2 RB followed by four contiguous subcarriers with start Burst Markers
- A Burst must end with a type-2 RB preceded by four contiguous subcarriers with end Burst Markers
- The burst may comprised of a series of RBs of different types and different bit loading

Pilots Rules

- Configurable pilot locations
- Pilot patterns are configurable during network initialization and constant over the entire spectrum
- Pilots on Boundaries
- Type-2 RBs are always used on OFDMA frame boundaries and exclusions edge subcarriers
- Start of a transmission burst
- First RB in a transmission burst is always of type \#2
- End of a transmission burst
- Last RB in a transmission burst is always of type \#2

Pilot Rules - Examples (1)

- Pilot grid example:
- Pilots repeat every four subcarriers
- LD pilots repeat every eight subcarriers
- This pilot pattern is configured during initialization

Pilot Rules - Examples (2)

- A transmission burst starts and ends with a Type 2 RB followed by the BM
- These pilots are added over the fixed pilot pattern
(Markers are not shown in this figure, see following slides with Markers)

Examples BM 4x6 in 8 symbols RB

Examples of BM $4 x 6$ in 12 symbols RB

Legend
+/-1: BM "B" 0 : BM "N"
D: Data
P : Pilot
CP : C. Pilot

Note: Power is constant versus time

Examples of BM 4x6 in 16 symbols RB

Legend
+/-1 : BM "B" 0 : BM "N"
D: Data
P: Pilot
CP : C. Pilot

Note: Power is constant versus time

Configuring the RB Profile

- Profile Information (PI) - 8 bits per RB
- 2 bits for RB type
- 4 bits for bit loading
- 2 reserved
- RB MAP is the mapping of the Pls to subcarriers over the full bandwidth
- Up to $\sim 4 K$ Pls can be defined
- RB MAP messages are sent by the CLT over the DS PLC
- Repetitions of string of PIs can be used to shorten RB MAP messages
- Up to TBD entries can be allowed in a RB MAP message

MAP Repetitions Example

- Assume a pattern with pilots every $4^{\text {th }}$ subcarrier and LD pilots every $8^{\text {th }}$ subcarrier over N subcarriers.
- Bit loading fixed at 8 bits per subcarrier
- A string of Pls is defined and repeated N/8 times

$$
\begin{aligned}
& \text { PI_0 : } 8 \text { bits / type } 0 \\
& \text { PI_1 : } 8 \text { bits / type } 1 \\
& \text { PI_2: } 8 \text { bits / type } 2
\end{aligned}
$$

MAP can be defined as:

$$
\text { N/8 * \{PI_2, 3*PI_0, PI_1, 3*PI_0\} }
$$

THANKS

