Forward Error Correction for IEEE 802.3bn EPoC

March 12, 2013

Supported and Contributed by

- Christian Pietsch
- Juan Montojo

Outline

- Requirements for FEC in EPoC
- Code Descriptions
 - Encoding
 - Parity Matrices
- Performance Analysis
 - Simulation results for AWGN and Burst Noise
- Summary

IEEE 802.3bn Objectives

- Objectives for IEEE 802.3bn
 - "Provide a physical layer specification that is capable of a baseline data rate of 1 Gb/s at the MAC/PLS service interface when transmitting in 120 MHz, or less, of assigned spectrum under defined baseline plant conditions"
 - "PHY to have:
 - A downstream frame error rate better than 10^-6 at the MAC/PLS service interface
 - An upstream frame error rate better than 5x10^-5 at the MAC/PLS service interface"
- Based on these objectives and on agreements achieved so far in EPoC, several requirements for the LDPC FEC can be derived
 - See next slide for further details

FEC Requirements for EPoC – Rate and Length

- The FEC scheme should support multiple rates
 - High codes rates should be supported in order to achieve large spectral efficiency
 - The highest rate should be in the order of R = 0.9
 - Lower code rates should be supported as well in order to provide sufficient robustness in severe burst noise conditions
 - The lowest rate should be in the order of R = 0.75
- The FEC scheme should support multiple code lengths
 - For bursty upstream traffic, the shortest code length should be roughly 1000 bits to serve a 64 bytes packet + overhead
 - For continuous downstream traffic, the longest code length should be roughly 15000 – 16000 bits
 - For burst modes (FDD US, TDD DS/US) intermediate length should be available

FEC Requirements for EPoC – Class of Codes

- The same class of LDPC codes should be applied in all EPoC modes
 - This allows having a common PHY in EPoC
- The FEC should have a deep error floor to avoid outer BCH codes
- Encoder and decoder should be implementable with low complexity
 - Quasi-cyclic LDPC codes should be applied in EPoC
 - For a rate R = k/n code the information block size is k \cdot Z and the code length is n \cdot Z
 - Z is called the lifting size of a quasi-cyclic LDPC code
- All lifting sizes Z of the LDPC codes should be the identical or should have a common large factor
 - An identical lifting size enables applying the same decoder for all codes of this lifting size
 - Common factors in the lifting size enable hardware reuse for codes of different lifting size

Design of the LDPC Codes

- All proposed LDPC codes are quasi-cyclic and binary
- The proposed LDPC codes fit to all modes in EPoC
 - A specific subset may be chosen for the continuous mode (FDD DS) and the burst modes (FDD US, TDD DS/US) in EPoC
 - E.g., codes with large lifting size may be chosen for the continuous mode
 - E.g., codes with short(er) lifting size and/or shorter code length may be chosen for burst modes
- The matrix M to calculate the parity bits has nearly upper diagonal form for all codes
 - In the proposed codes, only the first sub-diagonal of the matrix M is non-zero
 - The parity matrices H are constructed so that encoding can be realized with low complexity
 - A complete description is provided in the backup

Proposed Set of LDPC Codes

Code	Rate k/n	Lifting Size Z	Code Length n · Z
I	27/30 = 0.9	360	10800
II	13/15 = 0.867	360	5400
III	37/42 = 0.88	360	15120
IV	36/40 = 0.9	360	14400
V	40/45 = 0.89	360	16200
VI	12/16 = 0.75	60 / 120 / 240 / 360	960 / 1920 / 3840 / 5760
VII	16/20 = 0.8	60 / 120 / 240 / 360	1200 / 2400 / 4800 / 7200
VIII	20/24 = 0.833	120 / 240 / 360	2880 / 5760 / 8640
IX	23/27 = 0.85	120 / 240 / 360	3240 / 6480 / 9720

• The parity matrices of all codes are given in the backup slides

Edge Density, Parity Checks and Lifting Size

Base n	Base k	Rate	Lifting Z	Information bits	Code word length	Parity checks	Based edges	Edge density
30	27	0.9	360	9720	10800	1440	105	3.5
15	13	0.866667	360	4680	5400	1080 (1440)	54 (56)	3.6 (3.73)
40	36	0.9	360	12960	14400	1800	137	3.425
42	37	0.880952	360	13320	15120	2160	147	3.5
45	40	0.888889	360	14400	16200	1800	156	3.46
16	12	0.75	60	720	960	300	57	3.56
16	12	0.75	120	1440	1920	600	53	3.31
16	12	0.75	240	2880	3840	1200	51	3.19
16	12	0.75	360	4320	5760	1800	51	3.19
20	16	0.8	60	960	1200	300	72	3.60
20	16	0.8	120	1920	2400	600	71	3.55
20	16	0.8	240	3840	4800	1200	69	3.45
20	16	0.8	360	5760	7200	1800	67	3.35
24	20	0.833333	120	2400	2880	600	87	3.63
24	20	0.833333	240	4800	5760	1200	85	3.54
24	20	0.833333	360	7200	8640	1800	83	3.46
27	23	0.851852	120	2760	3240	600	98	3.63
27	23	0.851852	240	5520	6480	1200	97	3.59
27	23	0.851852	360	8280	9720	1800	93	3.44

Performance Analysis of the LDPC Codes

- In the following slides a detailed performance analysis of the proposed LDPC codes is provided
- Simulation results are shown for
 - AWGN
 - Burst noise including required time interleaving depth
 - OFDM symbol durations of 20 μs and 40 μs
- Performance is compared with the DVB-C2 LDPC code and the ITU-T G.9960 LDPC code
- Performance metric of interest is a bit error rate (BER) of 1e-8
 - A BER of 1e-8 corresponds roughly to a frame error rate of 1e-6

Burst Noise in OFDM

To analyze performance in burst noise, a simple model is chosen

- Burst noise is modeled as white Gaussian noise with a certain SNR_{Burst}
 - Burst noise is assumed to be wideband
- Burst noise is modeled with time duration T_{burst} and burst SNR SNR_{Burst}

- The burst noise duration T_{Burst} is assumed to be shorter than the duration of an OFDM symbol
 - In this case, burst noise can impact one or two OFDM symbols

Burst Noise affecting One OFDM Symbol

- Effective SNR in OFDM symbols hit by burst noise
 - SNR = $-10 \cdot \log_{10}(10^{(-SNR_{Burst, effective}/10)} + 10^{(-SNR_{AWGN, effective}/10)})$ $- SNR_{Burst, effective} = SNR_{Burst} - 10 \cdot \log_{10}(T_{Burst} / T_U)$ $- SNR_{AWGN, effective} = SNR_{AWGN} - 10 \cdot \log_{10}(1 - T_{Burst} / T_U)$
- Effective SNR in OFDM symbols not hit by burst noise
 - SNR = SNR_{AWGN}

Burst Noise affecting Two OFDM Symbols

Effective SNR in OFDM symbols hit by burst noise

 $SNR = -10 \cdot \log_{10}(10^{(-SNR_{Burst, effective}/10)} + 10^{(-SNR_{AWGN, effective}/10)})$ - SNR_{Burst, effective} = SNR_{Burst} - 10 \cdot log_{10}(0.5 \cdot (T_{Burst} - T_{CP}) / T_U) - SNR_{AWGN, effective} = SNR_{AWGN} - 10 \cdot log_{10}(1 - 0.5 \cdot (T_{Burst} - T_{CP}) / T_U)

- Effective SNR in OFDM symbols not hit by burst noise
 - SNR = SNR_{AWGN}

Frequency Domain View of Time Interleaving Depth D

Consideration on Time Interleaving Depth D

- The depth D of the time domain interleaving impacts how many QAM symbols of a code word are affected by burst noise
 - For a larger interleaving depth D less symbols of a code word are impacted and performance improves
 - The drawback of a large interleaving depth D is increased PHY latency
 - However, if the depth D is to small, BER performance does not reach the BER target of 1e-8 anymore
- Hence, an important metric is the required interleaving depth D to achieve BER = 1e-8 at a fixed AWGN SNR
 - Interleaving depths are provided in the following
- Comments on required interleaving depth D
 - It can be shown that the required interleaving depth D is related to the inverse of the code rate R, i.e. D ~ 1 / (1 – R)

Simulation Assumptions

Downstream

- **4096QAM**
- OFDM symbol durations $T_U = 20 \ \mu s$ and $T_U = 40 \ \mu s$
- Cyclic prefix length $T_{CP} = 2.5 \ \mu s$
- Burst noise
 - a) $T_{Burst} = 16 \ \mu s$, $SNR_{Burst} = 20 \ dB$ equally affecting two OFDM symbols
 - b) $T_{Burst} = 16 \ \mu s$, $SNR_{Burst} = 5 \ dB$ equally affecting two OFDM symbols
- Upstream
 - 1024QAM
 - OFDM symbol durations $T_U = 20 \ \mu s$ and $T_U = 40 \ \mu s$
 - Cyclic prefix length $T_{CP} = 2.5 \ \mu s$
 - Burst noise
 - a) $T_{Burst} = 10 \ \mu s$, $SNR_{Burst} = 10 \ dB$ equally affecting two OFDM symbols
 - b) $T_{Burst} = 1 \ \mu s$, $SNR_{Burst} = 0 \ dB$ affecting one OFDM symbol only

Further Assumptions

- LDPC decoder assumptions
 - Sum product decoder
 - Flooding schedule
 - No layered iterations are applied
 - The maximal number of iterations is set to 20 or 30, respectively
 - In the hardware implementation, layered iterations would be applied
 - » This allows reducing the number of iterations roughly by 50%
 - » Since the implementation and performance of a layered schedule is LDPC code specific, it is not used for code comparison
- Performance results for Codes I IV and Code VIII are presented in the following slides
 - The burst noise results are for the downstream scenarios
- Still missing simulations
 - Codes V IX for AWGN and burst noise scenarios
 - Results will be updated later

Performance of Codes I – IV in AWGN

- Performance of Codes I IV for max. 30 iterations with flooding schedule
- 4096QAM, AWGN
- Simulations still ongoing for BER ≤ 1e-8

Performance of Codes I – IV with 20 & 30 Iterations

- Performance of Codes I IV for max. 20 & 30 iterations with flooding schedule
- 4096QAM, AWGN
- The gain of 10 additional iterations is in the order of 0.1 dB

Comparison of Code III with DVB-C2 in AWGN

- Comparison of Code III and the DVB-C2 code
 - Code III: R = 0.881,
 n = 15120
 - DVB-C2: R = 0.889, n = 16200
- 4096QAM, AWGN
- Max. 20 iterations with flooding schedule
- Code III outperforms the DVB-C2 code by more than 0.4 dB at BER = 1e-6

Comparison of Code VIII, Z=240 with ITU-T G.9960

- Comparison of Code VIII and the ITU-T G.9960 code
 - Code VIII: R = 0.833, n = 5760, Z = 240
 - ITU-T: R = 0.883,
 n = 5184
- 1024QAM, AWGN
- Max. 30 iterations with flooding schedule
- Preliminary result
 - At low BER Code VIII outperforms G.9960 code
 - Simulations still ongoing for BER ≤ 1e-8

Qualcomm

Performance in Burst Noise impacting One Symbol

Required Interleaving	Rate R /	AWGN	20 μs symbol	OFDM duration	40 μs (symbol c	OFDM duration
Depth @ BER ≤ 1e-8	Length N	SNR [dB]	20 dB burst noise	5 dB burst noise	20 dB burst noise	5 dB burst noise
Code I	R = 0.9 N = 10800	38 dB	12	21	10	18
Code II	R = 0.867 N = 5400	37 dB	12	> 20	9	18
Code III	R = 0.881 N = 15120	37 dB	10	17	≤ 8	17
Code IV	R = 0.9 N = 14400	38 dB	10	18	9	17

Performance in Burst Noise impacting Two Symbols

Required Interleaving	Rate R /	AWGN	20 μs symbol	OFDM duration	40 μs (symbol c	DFDM Juration
Depth @ BER ≤ 1e-8	Length N	SNR [dB]	20 dB burst noise	5 dB burst noise	20 dB burst noise	5 dB burst noise
Code I	R = 0.9 N = 10800	38 dB	18	34	≤ 14	31
Code II	R = 0.867 N = 5400	37 dB	17	> 35	13	32
Code III	R = 0.881 N = 15120	37 dB	15	33	12	29
Code IV	R = 0.9 N = 14400	38 dB	16	> 32	12	30

Conclusions

- A set of quasi-cyclic LDPC codes has been proposed that is suited for all modes in EPoC
 - Codes with large lifting size may be chosen for the continuous mode in EPoC
 - Codes with short(er) lifting size and/or shorter code length may be chosen for burst modes in EPoC
- Low complexity implementation is ensured by the code structure and the choice of the lifting sizes
- Performance comparison
 - Code III (R = 0.88, n = 15120) outperforms the DVB-C2 LDPC code by more than 0.4 dB for 4096QAM
 - Code VIII (R = 0.833, n = 5760, Z = 240) outperforms the ITU-T G.9960 LDPC code at low BER for 1024QAM

LDPC Parity Check Matrix Description

- In the following slides the parity check matrices H of the LDPC codes are given
- Description
 - In all tables the top row indexes columns of the parity check matrix
 - The second row of the tables indicates information (1) and parity (0) columns
 - The third row of the tables indicates transmitted columns (1) and punctured columns (0)

Parity Matrices for Code I and Code II

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30]
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0 0	$16 \\ 241 \\ 241 \\ .$	235 122 122	$ \begin{array}{r} 13 \\ 58 \\ 0 \\ 90 \\ \end{array} $	157 187 29	$ \begin{array}{c} 218 \\ 66 \\ 224 \end{array} $	2 216 168	39 351 97	277 209 208	112 19 30	269 59 254	233 111 114	272 114 334	85 277 169	277 94 132	104 323 64	310 55 57	355 64 353	168 333 141	43 46 182 217	$198 \\ 325 \\ 159 \\ 105$	105 158 175 84	142 118 77 138	67 122 256 136	85 167 284 31	277 344 92 97	334 126 148 3	258 281 185 144	156 40 86 20	$20 \\ 85 \\ 184 \\ 6$	5 222 93 354

Figure 1: Base code information bits: 27; (max) block length: 30. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	•		45	•	92	28		137	111	344	2	338	190	258	328	13
0	241	12		284			186		198	185	334	76	148	236	93	190
8.3	241	122	119	171	17	244	303	218	356	258	53	181	330	271	279	150
100		122	0	287	36	135	84	72	245	208	303	239	124	176	284	121

Figure 2: Base code information bits: 13; (max) block length: 15. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Code III and Code IV

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	151				186		275	240			305				27	163	179		114		54		280	37
0	61							193	90	357			49	135				153			20	322	243	
•	61	122	184			153		306		11	164		•				306	3	53	124		243	-	71
•		122	183	•	355	314	32			27		298	121	76	90		266	•		-	259	•		141
· .	1.1		183	244			266	•	278	1	145	86	•	183		2		56		103		•	344	- + L
Ŀ	1.1	•	•	244	345	119	•		78	1		24	221		301	145			76	259		119	•	215
25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	2						
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1						
	10	r 10	a ar	° 000) 111	204	,		100	C A			00	49		74	OF	1						
17	27	3 12. 3 106	2 200	5 220) III) .	189	, .) 79		168	238	. 228	. 270	00	40		300	25.							
126	3 30	6 .	15	6 194	, 1 234	111	42	280) .	- 200		252	319		320) .	22	ĩ						
					342		76	355	153	43	233	55	320) 101	150	-) 169	13	2						
164	4 208	8 182	2 65	290) 352		140) 174	35		36			114	4 331	ι.	17	·						
159).	16	13			151	I	195		39	259	70		307	231	1 92	46							

Figure 3: Base code information bits: 37; (max) block length: 42. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
0	151			234			82	241	101	129	60		69	82	242	275	140			
0	61				117	59				69	249			123	211	178	168	350	73	
·	61	122			53			142	156		211	144	125	354	-			159	278	
- ·		122	183	309	155	124	3	260	261		•	179				132	133	•	•	
Ŀ		1.1	183	158		190	248			112	•	231	98	1.0	162	•		12	41	
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	0.9	0.4			010		0	00	000		H 0	944	075	0.01/	2 105	. 00	140		0.01	. 9.41
1.	93	84			316	, . 	14	99	299	940	(0	344	1 278	5 310	5 105) 20 100	149		330) 341
			313	304	1 232	281	. 14	324	114	349	312	2 330) ·			192	2 129	83	27	141
34	5 ·	239	9 27 200		8	64	8	88		271	. 91	0	252	48	114	1 218) .	20		91
16	1 268	s .	. 262	242	2 343	5 98			106	210	240	J 79	233	5	163	· ·	230	330	278	5 70
84	155	5 11	L •	202	2 .	244	170) 354	336	119	• •		- 99	348	5 210) 313	3 231	155	214	256

Figure 4: Base code information bits: 36; (max) block length: 40. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrix for Code V

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	[
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ē
0	149				218		108					44	218	145	234		101		127	226	164		77	
0	59					243			171	311		210				159	329			204		238	28	
•	59	122	184	•			71	300		237	222				7	•			110		39	285	•	
•		122	183		27	313	· ·		35	•	102			316	150			223	•	•		226	19	
·	1	•	183	238				232		147			71	218	•	129		189	266	357	226		•	
Ŀ	1	•	1	238	17	82	164	341	189		55	69	89	•	•	297	176	262		•			·	1
24	25	26	27	28	29	30	31	32	- 33	34	35	36	37	38	39	40	41	42	43	44	45	1		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1		
				909		955	- 00	50		994		0.00			18	95	19/	1 201	< 901	966	194			
56		353	19!	5 184	90	200	. 22		358	304	176	208 169	26		10	20	308	∔ 320 }.	220	1 200 172	229			
191	169) .	45	291	25	223				35	52		173	3 6		219) .	183	3 112	2 216	250	5		
	165	5 188	3 298	5.	274	120	34	45	29	341		167		27°	4 273	3 213	3.		274	Į .	274	1		
·	179) 70		276	2		266	32	311	•	95		10'	7 34	1 232	2 167	334	4 299).		248	8		
207	· .		110).	-	-	80	263	62	179	242	2 82	242	2 34	5.		242	2 - 296	з.	351	24'	7		

Figure 5: Base code information bits: 40; (max) block length: 45. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Code VI, Z = 60 & 120

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	14	•	•	8	•	53	11	50	•	•	38	53	35	4	48	55
0	59	•	•	•	42	56	•	•	23	16	9	16	•	50	$\overline{7}$	16
	59	58	55	•	54	•	31	27	•	55	•	2	13	30	50	39
	•	35	58	59	26	54	•	•	13	29	16	•	39		50	26
Ŀ	•	•	$\overline{7}$	43	•	•	19	29	40	35	12	57	5	56	•	49

Figure 6: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 60

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	28	•	•	21	6	83	95	24	•	•	•	7	•	31	43	80
0	118		•		95	•	•	•	11	31	71	94	12		22	25
·	118	62			•	•	27	33	•	67	14	9	109	102	$\overline{7}$	104
·	•	62	3	10		31		36	92	59		•	118	65	110	62
Ŀ	•	•	3	5	78	74	61	•	65	•	61	•	103	7	•	90

Figure 7: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

Parity Matrices for Code VI, Z = 240 & 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	61			154				230	70	209		171	•	193	75	224
0	1				10	134	131	47	188			11	188			206
	1	113			143	55				236	27	•	37	199	68	61
	•	113	174	198	167		139		210	172	126	207	•		50	192
Ŀ	•		174	199		225	2	221			216	•	193	188	228	223

Figure 8: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

ГО	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	88		÷	123	•			142	10	26		21		229	65	230
0	358	۲	•2		265	301	153	264	107		a.	131	341	•		349
	358	62			288	119				261	88		331	331	8 <mark>1</mark>	20
	82	62	243	114	340		20	\$	121	110	269	189	25		309	303
Ŀ	3	٠	243	197		250	230	356	57		150		217	325	85	92

Figure 9: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Code VII, Z = 60 & 120

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	46	•	•	53	53	•	10	44	•	$\overline{7}$	•	•	32	27	43	2	$\overline{7}$	58	•	25
0	31	5				24	22		20		8	4	21	46		9	38	21	9	11
	31	52	54			49		23	41	0		6			$\overline{7}$	53	8	56	20	14
.		52	31	$\overline{7}$	10	44	41				9	3	13	50	9			5	27	50
Ŀ			31	52	53			40	14	28	3	30	18	31	32	34	12	•	36	1

Figure 10: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 60

Γ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ī	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
t																					
	0	89	•	•	88	•	58	26	•	109	27	•	68	101	42	99	98	•	•	58	90
	0	59	•			106	•	•		46	36	59	50	67	1	57	87	73	118	•	85
		59	79	26		3	69	•	106	•	50	•	112	•	27	3		91	77	30	54
		•	61	42	77	•	78	84	10	•	•	114		38	•	42	68	83	57	32	107
L	•	•	•	26	56	38	•	93	37	76	•	104	106	30	29	•	90	43	57	15	109

Figure 11: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

Parity Matrices for Code VII, Z = 240 & 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
238	85	•	•	17	•	27	129	204	18	•	•	2	99	62	73	•	•	141	29	84
238	25	•	•	•	125	113	47	•	•	•	51	236	89	177	65	145	107	54	•	91
•	25	122	•	•	74		•	•	136	40	34	153	26	•	•	158	223	139	86	35
· ·	•	122	63	67	100	93	•	5	•	25	•	•	110	76	167	176	25	•	141	199
[·	•	•	63	105	•	•	134	136	140	84	186	•	•	74	25	38	74	178	26	80

Figure 12: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
354	85		•	317	•	•	•	•	266	155	168	61	228	101	261	125	•	305	70	285
354	355		•		136	132	358	•	•	185		187	341	•	223		137	121	327	39
	355	62			268	189	83	341		•	211			132	204	328	113	220	•	83
		62	183	304	•	136	•	140	49	209	•		7	261	327	6	349	•	28	278
L .			183	37	0	•	58	172	344		100	203		•	•	78	208	185	233	347

Figure 13: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Code VIII, Z = 120 & 240

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	91	•	•	74	85	74	•	103	102	•	•	87	82	28	14	77	73	17	35	•	•	48	101	90
0	61	57	•	•	•	•	37	111	53	3	11	•	•	79	86		23	92	67	97	110	55	112	114
	61	0	107	•	86	110	•	•	•	81	•	82	113	•	108	2	75	•	88	80	78	9	61	113
•	•	0	57	30	•	27	91	•	114	•	108	44	17	78	•	67	•	109	•	44	86	30	67	50
Ŀ	•	•	57	0	104	•	21	12	•	63	7	•	41	113	8	5	73	19	4	70	80	•	•	9

Figure 14: Base code information bits: 20; (max) block length: 24. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	122	•	•	237	•	•	•	14	143	•	79	213	115	197	•	•	166	88	118	114	54	113	210	180
0	62				229	95	82	•		47	137	4			123	185	78		183	0	94	51	146	131
·	62	79	42	•	65	27	•	174	53	•	•	•	38	20	101	231	196	224	•	•	143	27	213	217
·	•	61	58	106	135	•	112	•	92	90	•	8	•	221	177	131	107	147	136	147	•	•	134	59
Ŀ	•	•	42	85	•	46	116	123	•	34	72	•	119	140	78	124	•	171	133	155	150	71	•	213

Figure 15: Base code information bits: 20; (max) block length: 24. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

Parity Matrices for Code VIII, Z = 360and Code IX, Z = 120

ΓO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0		•	×	61	356	63	*	107	229	131	.		•2	38	279	172	215	7	313		3	•0	107	340
0	61			0.65	106	229	123		₩2	52	-	14	242	305	111	249	30	189	57	205	3 4	140	137	46
	61	122	×			•	188	280	240	•	167	283		185	•		84	68	267	323	336	122	264	299
		122	210	332		176		319	æ		343	288	259	119	183	240	203		24	248	129	120	64	216
Ŀ			210	331	133		262	2.8	221	274	125	сi	273	÷	126	135	148	289	354	73	254	251		195

Figure 16: Base code information bits: 20; (max) block length: 24. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	91	8	653	72	23		2.1	÷	47	853	34	53	114	5	61	97	106	2.	2.5	86	19	6		53	79	6	112
0	61	11			2		89	68	117	43		7		31	29	112	88	86	7		10	62	69	58	85		9
	61	74	102		•	72	101	3	•	88		30	110	96	91		•	68	90	41	23	114	53		43	104	40
•	•	74	52	28	20	10	38	55	<u>*</u> .	2963	117	÷	•	25		92	112	12	11	100	*		0	102	111	115	87
			52	118		25	340	75	29	3	109		84		52	93	42	78	79	104	89	105	77	0	363	94	13

Figure 17: Base code information bits: 23; (max) block length: 27. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

Parity Matrices for Code IX, Z = 240 & Z = 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	173	28	*	216	52	25	141	173		238	10		172	71			62	128	46	*	16	70	129	7	108		94
0	113	15	2		*		S. T		193	126	13	164	197	81	15	146	94	195	12	99	43	66	80	100	162	109	47
1	113	79	26	*	191		124	213	47	190	171	1973	8.52		107	13	234	118	92	37	114		98	222	12	167	155
2	۰	61	42	85	131	33	0.2	168	114		56	166	175	1 2	\$	206	1.20	225	172	25		166	5 /2	88	45	19	120
Ŀ	8		26	64		79	53	•		•	152	109	•	29	189	131		•	96	132	166	196	213	225	150	52	228

Figure 18: Base code information bits: 23; (max) block length: 27. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
95	4			220		07	68	205	915					222	959	55	910		955	170	078	200	10	099	270		200
35	4 24					174		$205 \\ 216$	76	170	318	88	239			0	306	257	27	98	85	$200 \\ 217$		135		64	117
·	24	98		•	44	162	240	•	•		59	•	94	97	60	358	182	47	36	•	•	38	295	101	162	235	261
· ·		98	57	351	58		124	•		188	•	39	325	•	346	93		316		101	284		135	35	111	268	110
Ŀ			57	175	266			9	28	228	349	34		68		•	73	305	290	205	0	170	345	•	226	29	229

Figure 19: Base code information bits: 23; (max) block length: 27. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Encoding of the LDPC Codes

 The attached document includes a detailed description of the codes and its encoding

Consideration on Time Interleaving Depth D

- The depth D of the time domain interleaving impacts how many QAM symbols of a code word are affected by burst noise
 - For a larger interleaving depth D less symbols of a code word are impacted and performance improves
 - The drawback of a large interleaving depth D is increased PHY latency
 - However, if the depth D is to small, BER performance does not reach the BER target of 1e-8 anymore
- Hence, an important metric is the required interleaving depth D to achieve BER = 1e-8 at a fixed AWGN SNR
 - Interleaving depths are provided in the following
- Comments on required interleaving depth D
 - It can be shown that the required interleaving depth D is related to the inverse of the code rate R, i.e. D ~ 1 / (1 – R)

Code Rate and Interleaving Depth

- In burst noise a higher AWGN SNR is needed for the same capacity
 - This increase in SNR is called loss in the figure
 - This can be seen as required SNR margin for burst noise
- For a given margin, the figure shows the required interleaving depth as a function of code rate
- Codes with higher rate require higher interleaving depth
 - In comparisons for burst noise performance, code rates must be identical

