Forward Error Correction for IEEE 802.3bn EPoC

Supported and Contributed by

- Christian Pietsch
- Juan Montojo

Outline

- Requirements for FEC in EPoC
- Code Descriptions
 - Encoding
 - Parity Matrices
- Performance Analysis
 - Simulation results for AWGN and Burst Noise
- Summary

IEEE 802.3bn Objectives

Objectives for IEEE 802.3bn

- "Provide a physical layer specification that is capable of a baseline data rate of 1 Gb/s at the MAC/PLS service interface when transmitting in 120 MHz, or less, of assigned spectrum under defined baseline plant conditions"
- "PHY to have:
 - A downstream frame error rate better than 10^-6 at the MAC/PLS service interface
 - An upstream frame error rate better than 5x10^-5 at the MAC/PLS service interface"
- Based on these objectives and on agreements achieved so far in EPoC, several requirements for the LDPC FEC can be derived
 - See next slide for further details

FEC Requirements for EPoC – Rate and Length

- The FEC scheme should support multiple rates
 - High codes rates should be supported in order to achieve large spectral efficiency
 - The highest rate should be in the order of R = 0.9
 - Lower code rates should be supported as well in order to provide sufficient robustness in severe burst noise conditions
 - The lowest rate should be in the order of R = 0.75
- The FEC scheme should support multiple code lengths
 - For bursty upstream traffic, the shortest code length should be roughly 1000 bits to serve a 64 bytes packet + overhead
 - For continuous downstream traffic, the longest code length should be roughly 15000 – 16000 bits
 - For burst modes (FDD US, TDD DS/US) intermediate length should be available

FEC Requirements for EPoC – Class of Codes

- The same class of LDPC codes should be applied in all EPoC modes
 - This allows having a common PHY in EPoC
- The FEC should have a deep error floor to avoid outer BCH codes
- Encoder and decoder should be implementable with low complexity
 - Quasi-cyclic LDPC codes should be applied in EPoC
 - For a rate R = k/n code the information block size is k \cdot Z and the code length is n \cdot Z
 - Z is called the lifting size of a quasi-cyclic LDPC code
- All lifting sizes Z of the LDPC codes should be the identical or should have a common large factor
 - An identical lifting size enables applying the same decoder for all codes of this lifting size
 - Common factors in the lifting size enable hardware reuse for codes of different lifting size

PAGE 6 | IEEE 802.3bn

Design of the LDPC Codes

- All proposed LDPC codes are quasi-cyclic and binary
- The proposed LDPC codes fit to all modes in EPoC
 - A specific subset may be chosen for the continuous mode (FDD DS) and the burst modes (FDD US, TDD DS/US) in EPoC
 - E.g., codes with large lifting size may be chosen for the continuous mode
 - E.g., codes with short(er) lifting size and/or shorter code length may be chosen for burst modes
- The matrix M to calculate the parity bits has nearly upper diagonal form for all codes
 - In the proposed codes, only the first sub-diagonal of the matrix M is non-zero
 - The parity matrices H are constructed so that encoding can be realized with low complexity
 - A complete description is provided in the backup

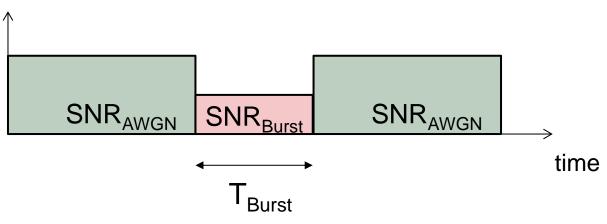
Proposed Set of LDPC Codes

Code	Rate k/n	Lifting Size Z	Code Length n · Z
I.	27/30 = 0.9	360	10800
П	13/15 = 0.867	360	5400
Ш	37/42 = 0.88	360	15120
IV	36/40 = 0.9	360	14400
V	40/45 = 0.89	360	16200
VI	12/16 = 0.75	60 / 120 / 240 / 360	960 / 1920 / 3840 / 5760
VII	16/20 = 0.8	60 / 120 / 240 / 360	1200 / 2400 / 4800 / 7200
VIII	20/24 = 0.833	120 / 240 / 360	2880 / 5760 / 8640
IX	23/27 = 0.85	120 / 240 / 360	3240 / 6480 / 9720

• The parity matrices of all codes are given in the backup slides

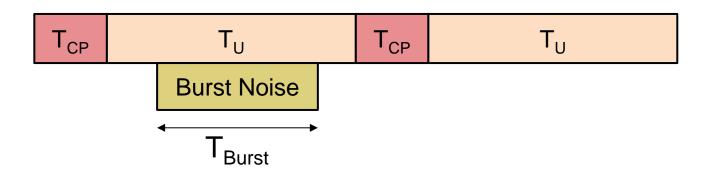
PAGE 8		IEEE	802.	3bn
--------	--	------	------	-----

Edge Density, Parity Checks and Lifting Size


Base n	Base k	Rate	Lifting Z	Information bits	Code word length	Parity checks	Based edges	Edge density
30	27	0.9	360	9720	10800	1440	105	3.5
15	13	0.866667	360	4680	5400	1080 (1440)	54 (56)	3.6 (3.73)
40	36	0.9	360	12960	14400	1800	137	3.425
42	37	0.880952	360	13320	15120	2160	147	3.5
45	40	0.888889	360	14400	16200	1800	150	3.33
16	12	0.75	60	720	960	300	57	3.56
16	12	0.75	120	1440	1920	600	53	3.31
16	12	0.75	240	2880	3840	1200	51	3.19
16	12	0.75	360	4320	5760	1800	51	3.19
20	16	0.8	60	960	1200	300	72	3.60
20	16	0.8	120	1920	2400	600	71	3.55
20	16	0.8	240	3840	4800	1200	69	3.45
20	16	0.8	360	5760	7200	1800	67	3.35
24	20	0.833333	120	2400	2880	600	87	3.63
24	20	0.833333	240	4800	5760	1200	85	3.54
24	20	0.833333	360	7200	8640	1800	83	3.46
27	23	0.851852	120	2760	3240	600	98	3.63
27	23	0.851852	240	5520	6480	1200	97	3.59
27	23	0.851852	360	8280	9720	1800	93	3.44

Performance Analysis of the LDPC Codes

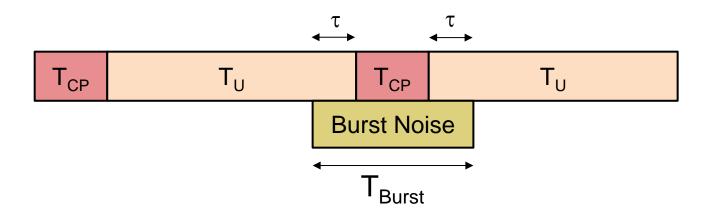
- In the following slides a detailed performance analysis of the proposed LDPC codes is provided
- Simulation results are shown for
 - AWGN
 - Burst noise including required time interleaving depth
 - OFDM symbol durations of 20 μs and 40 μs
- Performance is compared with the DVB-C2 LDPC code and the ITU-T G.9960 LDPC code
- Performance metric of interest is a bit error rate (BER) of 1e-8
 - A BER of 1e-8 corresponds roughly to a frame error rate of 1e-6


Burst Noise in OFDM

- To analyze performance in burst noise, a simple model is chosen
 - Burst noise is modeled as white Gaussian noise with a certain SNR_{Burst}
 - Burst noise is assumed to be wideband
 - Burst noise is modeled with time duration T_{burst} and burst SNR SNR_{Burst}

- The burst noise duration T_{Burst} is assumed to be shorter than the duration of an OFDM symbol
 - In this case, burst noise can impact one or two OFDM symbols

Burst Noise affecting One OFDM Symbol


Effective SNR in OFDM symbols hit by burst noise

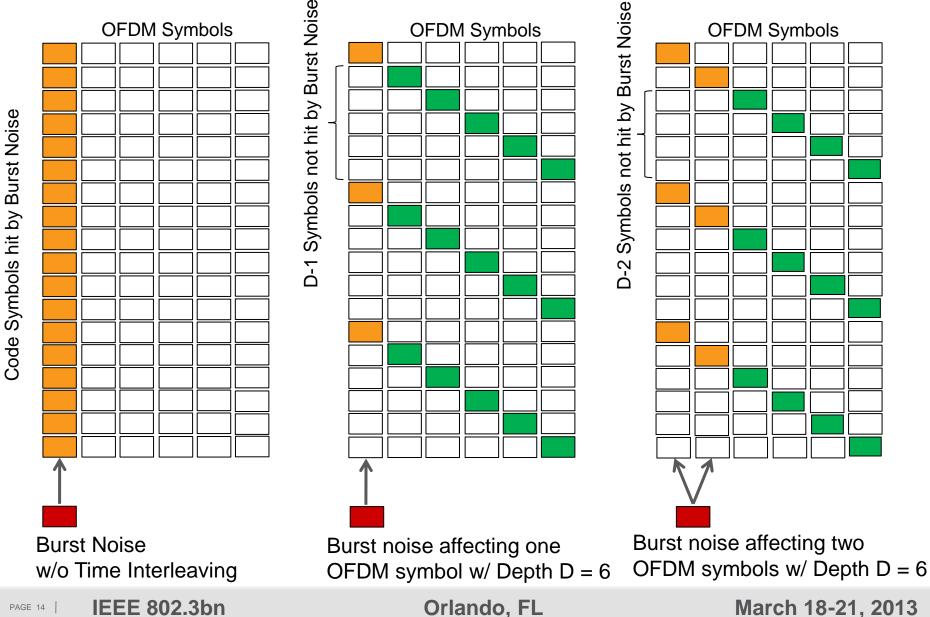
$$SNR = -10 \cdot \log_{10}(10^{(-SNR_{Burst, effective}/10)} + 10^{(-SNR_{AWGN, effective}/10)})$$

- SNR_{Burst, effective} = SNR_{Burst} - 10 \cdot log_{10}(T_{Burst} / T_U)
- SNR_{AWGN, effective} = SNR_{AWGN} - 10 \cdot log_{10}(1 - T_{Burst} / T_U)

- Effective SNR in OFDM symbols not hit by burst noise
 - SNR = SNR_{AWGN}

PAGE 12 | IEEE 802.3bn

Burst Noise affecting Two OFDM Symbols


Effective SNR in OFDM symbols hit by burst noise

 $SNR = -10 \cdot \log_{10}(10^{(-SNR_{Burst, effective}/10)} + 10^{(-SNR_{AWGN, effective}/10)})$ - SNR_{Burst, effective} = SNR_{Burst} - 10 \cdot log_{10}(0.5 \cdot (T_{Burst} - T_{CP}) / T_{U}) - SNR_{AWGN, effective} = SNR_{AWGN} - 10 \cdot log_{10}(1 - 0.5 \cdot (T_{Burst} - T_{CP}) / T_{U})

- Effective SNR in OFDM symbols not hit by burst noise
 - SNR = SNR_{AWGN}

PAGE 13 | IEEE 802.3bn

Frequency Domain View of Time Interleaving Depth D

PAGE 14

Consideration on Time Interleaving Depth D

- The depth D of the time domain interleaving impacts how many QAM symbols of a code word are affected by burst noise
 - For a larger interleaving depth D less symbols of a code word are impacted and performance improves
 - The drawback of a large interleaving depth D is increased PHY latency
 - However, if the depth D is to small, BER performance does not reach the BER target of 1e-8 anymore
- Hence, an important metric is the required interleaving depth D to achieve BER = 1e-8 at a fixed AWGN SNR
 - Interleaving depths are provided in the following
- Comments on required interleaving depth D
 - It can be shown that the required interleaving depth D is related to the inverse of the code rate R, i.e. D ~ 1 / (1 – R)

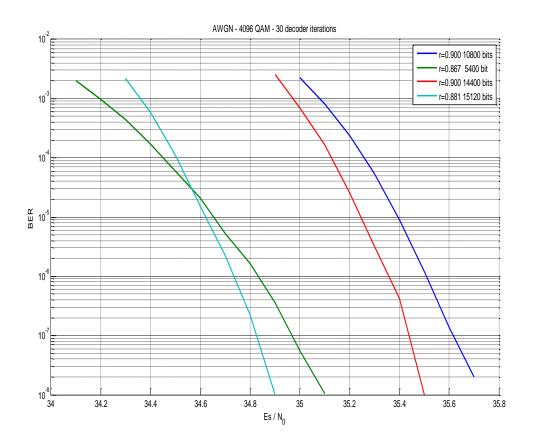
Simulation Assumptions

- Downstream
 - **4096QAM**
 - OFDM symbol durations $T_U = 20 \ \mu s$ and $T_U = 40 \ \mu s$
 - Cyclic prefix length $T_{CP} = 2.5 \ \mu s$
 - Burst noise

a) $T_{Burst} = 16 \ \mu s$, $SNR_{Burst} = 20 \ dB$ equally affecting two OFDM symbols

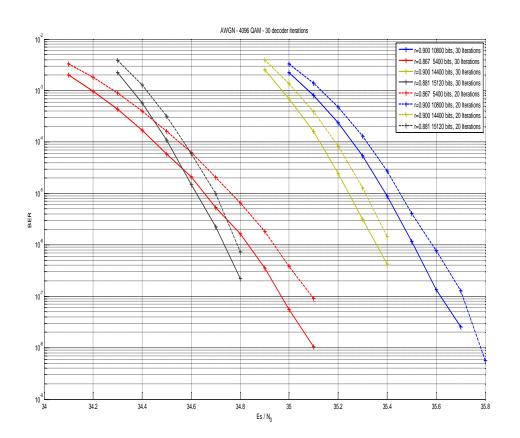
b) $T_{Burst} = 16 \ \mu s$, $SNR_{Burst} = 5 \ dB$ equally affecting two OFDM symbols

- Upstream
 - 1024QAM
 - OFDM symbol durations $T_U = 20 \ \mu s$ and $T_U = 40 \ \mu s$
 - Cyclic prefix length $T_{CP} = 2.5 \ \mu s$
 - Burst noise

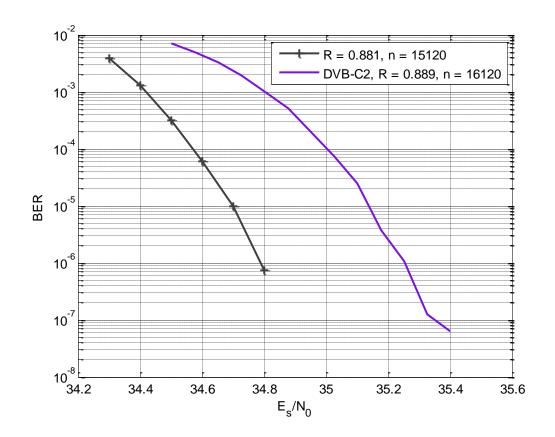

a) $T_{Burst} = 10 \ \mu s$, $SNR_{Burst} = 10 \ dB$ equally affecting two OFDM symbols

b) $T_{Burst} = 1 \ \mu s$, $SNR_{Burst} = 0 \ dB$ affecting one OFDM symbol only

Further Assumptions

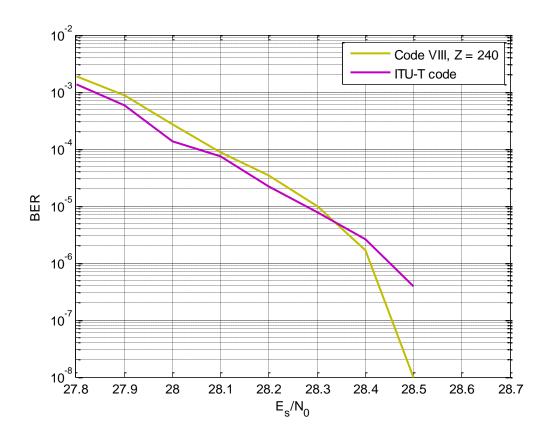

- LDPC decoder assumptions
 - Sum product decoder
 - Flooding schedule
 - No layered iterations are applied
 - The maximal number of iterations is set to 20 or 30, respectively
 - In the hardware implementation, layered iterations would be applied
 - » This allows reducing the number of iterations roughly by 50%
 - » Since the implementation and performance of a layered schedule is LDPC code specific, it is not used for code comparison
- Performance results for Codes I IV and Code VIII are presented in the following slides
 - The burst noise results are for the downstream scenarios
- Still missing simulations
 - Codes V IX for AWGN and burst noise scenarios
 - Results will be updated later

Performance of Codes I – IV in AWGN


- Performance of Codes I IV for max. 30 iterations with flooding schedule
- 4096QAM, AWGN
- Simulations still ongoing for BER ≤ 1e-8

Performance of Codes I – IV with 20 & 30 Iterations

- Performance of Codes I IV for max. 20 & 30 iterations with flooding schedule
- 4096QAM, AWGN
- The gain of 10 additional iterations is in the order of 0.1 dB


Comparison of Code III with DVB-C2 in AWGN

- Comparison of Code III and the DVB-C2 code
 - Code III: R = 0.881, n = 15120
 - DVB-C2: R = 0.889,
 n = 16200
- 4096QAM, AWGN
- Max. 20 iterations with flooding schedule
- Code III outperforms the DVB-C2 code by more than 0.4 dB at BER = 1e-6

Comparison of Code VIII, Z=240 with ITU-T G.9960

Orlando, FL

IEEE 802.3bn

PAGE 21

- Comparison of Code VIII and the ITU-T G.9960 code
 - Code VIII: R = 0.833,
 n = 5760, Z = 240
 - ITU-T: R = 0.883,
 n = 5184
- 1024QAM, AWGN
- Max. 30 iterations with flooding schedule
- Preliminary result
 - At low BER Code VIII outperforms G.9960 code
 - Simulations still ongoing for BER ≤ 1e-8

Performance in Burst Noise impacting One Symbol

Required Interleaving	Rate R /	AWGN		OFDM duration	40 μs (symbol d	
Depth @ BER ≤ 1e-8	Length N	SNR [dB]	20 dB burst noise	5 dB burst noise	20 dB burst noise	5 dB burst noise
Code I	R = 0.9 N = 10800	38 dB	12	21	10	18
Code II	R = 0.867 N = 5400	37 dB	12	> 20	9	18
Code III	R = 0.881 N = 15120	37 dB	10	17	≤ 8	17
Code IV	R = 0.9 N = 14400	38 dB	10	18	9	17

PAGE 22 | IEEE 802.3bn

Performance in Burst Noise impacting Two Symbols

Required Interleaving	Rate R /	AWGN	20 μs symbol	OFDM duration	40 μs (symbol c	
Depth @ BER ≤ 1e-8	Length N	SNR [dB]	20 dB burst noise	5 dB burst noise	20 dB burst noise	5 dB burst noise
Code I	R = 0.9 N = 10800	38 dB	18	34	≤ 1 4	31
Code II	R = 0.867 N = 5400	37 dB	17	> 35	13	32
Code III	R = 0.881 N = 15120	37 dB	15	33	12	29
Code IV	R = 0.9 N = 14400	38 dB	16	> 32	12	30

PAGE 23 | IEEE 802.3bn

Conclusions

- A set of quasi-cyclic LDPC codes has been proposed that is suited for all modes in EPoC
 - Codes with large lifting size may be chosen for the continuous mode in EPoC
 - Codes with short(er) lifting size and/or shorter code length may be chosen for burst modes in EPoC
- Low complexity implementation is ensured by the code structure and the choice of the lifting sizes
- Performance comparison
 - Code III (R = 0.88, n = 15120) outperforms the DVB-C2 LDPC code by more than 0.4 dB for 4096QAM
 - Code VIII (R = 0.833, n = 5760, Z = 240) outperforms the ITU-T G.9960 LDPC code at low BER for 1024QAM

LDPC Parity Check Matrix Description

- In the following slides the parity check matrices H of the LDPC codes are given
- Description
 - In all tables the top row indexes columns of the parity check matrix
 - The second row of the tables indicates information (1) and parity (0) columns
 - The third row of the tables indicates transmitted columns (1) and punctured columns (0)

Parity Matrices for Code I and Code II

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0																				198										5
1 °	$\frac{241}{241}$																			$\frac{325}{159}$										222 93
Ŀ		122	90	29	224	168	97		30	254	114	334	169	132			353	141	217	105	84	138	136	31	97	3	144	20	6	354

Figure 1: Base code information bits: 27; (max) block length: 30. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0		•	45		92	28		137	111	344	2	338	190	258	328	13
0	241			284			186		198	185	334	76	148	236	93	190
	241	122	119	171	17	244	303	218	356	258	53	181	330	271	279	150
		122	0	287	36	135	84	72	245	208	303	239	124	176	284	121

Figure 2: Base code information bits: 13; (max) block length: 15. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Code III and Code IV

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	_
]	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
=	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	0	151				186		275	240			305				27	163	179		114		54		280	37	
	0	61							193	90	357			49	135				153			20	322	243		
	÷	61	122	184			153		306	1	11	164	•					306	3	53	124		243		71	
	•	1	122	183		355	314	32	•		27		298	121	76	90		266				259			141	
	•			183	$\frac{244}{244}$	345	119	266	•	$\frac{278}{78}$		145	86 94	221	183	301	$\frac{2}{145}$	•	56	76	$\frac{103}{259}$	•	119	344		
	Γ.	1							•				24					1	<u> </u>	10	259	•	119	•	215	
_	25	26	27	28	29	30	31	32	- 33	34	35	36	37	38	39	40	41	. 42	1							
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1								
_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0								
-																			1							
		125							•	122				88			74									
	17	273			119		182				238	3 228					309									
	126	306	:	150	3 194	4 234 342		1 42 76	280 355		43	233	252 55			320 150										
	164	208	182	2 65				140			40				114											
	159						151		195		39				30'											

Figure 3: Base code information bits: 37; (max) block length: 42. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	0	151			234			82	241	101	129	60		69	82	242	275	140			
	0	61	· ·			117	59				69	249			123	211	178	168	350	73	
	:	61	$122 \\ 122$	183	309	$\frac{53}{155}$	124	3	$142 \\ 260$	$\frac{156}{261}$	1	211	$144 \\ 179$	125	354	:	132	133	159	278	
	[.			183	158			248	200		112		231	98	1	162			12	41	
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
		93	84			318		0	99			78			316	6 105				33	
	345		239	313 27		232 8	281 64	14 8	324 88					$\frac{5}{252}$	· 48	114	192 218) 83 20		7 141 91
	345 161	268		262	· 242	-		-		106	271 210					114		5 . 230			
	84	155					244		354					99	-						

Figure 4: Base code information bits: 36; (max) block length: 40. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

PAGE 29 | IEEE 802.3bn

Parity Matrix for Code V

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0		203			188	278			313					56	308	248	206	142	25	309		355	257					99		42		303					197	126	359	308	257	342	113		109
0	61				•	1		319	106		250	153			283	32			•		225		284		132	71	113		1	130	173	194	287	129	19	294	307		•	265	233		274		318
•	61	113				268	330			142								202		279	282		132	99		203	129	26	347		74	181	352	84		293	353	212	309		199			303	210
•		113	183		302			221	153	349	5	334	256	269			208	61	240		40			194					123					1	147	288		109		122	333	152		275	142
			183	244			89			105		301	331				194		237	155		36			142	248		182	51	51			191		107	54	91		18	254		75	225	111	116
ŀ				244	189	45	352	118			59		340	99	267	122						213		159	86		352				163	151	339	225	326			147	170			7	198	110	35

Figure 1: Base code information bits: 40; (max) block length: 45. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Code VI, Z = 60 & 120

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	14	•	•	8	•	53	11	50	•	•	38	53	35	4	48	55
0	59			•	42	56			23	16	9	16	•	50	$\overline{7}$	16
·	59	58	55	•	54	•	31	27	•	55	•	2	13	30	50	39
	•	35	58	59	26	54	•	•	13	29	16	•	39		50	26
Ŀ		•	$\overline{7}$	43	•	•	19	29	40	35	12	57	5	56	•	49

Figure 6: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 60

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	28	•	•	21	6	83	95	24	•	•	•	7	•	31	43	80
0	118		•	•	95				11	31	71	94	12	•	22	25
	118	62	•	•	•	•	27	33		67	14	9	109	102	7	104
·	•	62	3	10	•	31	•	36	92	59	•	•	118	65	110	62
Ŀ	•	•	3	5	78	74	61	•	65	•	61	•	103	7	•	90

Figure 7: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

PAGE 31 | IEEE 802.3bn

Orlando, FL

Parity Matrices for Code VI, Z = 240 & 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	61	•	•	154	•	•	•	230	70	209	•	171	•	193	75	224
0	1	•	•	•	10	134	131	47	188			11	188		•	206
	1	113	•	•	143	55	•	•	•	236	27	•	37	199	68	61
·	•	113	174	198	167	•	139	•	210	172	126	207	•	•	50	192
Ŀ	•		174	199	•	225	2	221	•		216	•	193	188	228	223

Figure 8: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	88	•	•	123	•	•	•	142	10	26	•	21	•	229	65	230
0	358	•	•	•	265	301	153	264	107	•	•	131	341	•	•	349
	358	62	•	•	288	119	•	•	•	261	88	•	331	331	81	20
•	•	62	243	114	340	•	20	•	121	110	269	189	•	•	309	303
Ŀ	•	•	243	197	•	250	230	356	•	•	150	•	217	325	85	92

Figure 9: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

PAGE 32 | IEEE 802.3bn

Orlando, FL

Parity Matrices for Code VII, Z = 60 & 120

[0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	46	•	•	53	53	•	10	44	•	$\overline{7}$	•	•	32	27	43	2	$\overline{7}$	58	•	25
0	31	5	•		•	24	22		20	•	8	4	21	46		9	38	21	9	11
	31	52	54	•	•	49	•	23	41	0	•	6	•	•	$\overline{7}$	53	8	56	20	14
·	•	52	31	$\overline{7}$	10	44	41	•	•	•	9	3	13	50	9	•	•	5	27	50
Ŀ	•	•	31	52	53	•	•	40	14	28	3	30	18	31	32	34	12	•	36	1

Figure 10: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 60

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	89	•	•	88	•	58	26	•	109	27	•	68	101	42	99	98	•	•	58	90
0	59				106	•	•	•	46	36	59	50	67	1	57	87	73	118		85
	59	79	26		3	69	•	106	•	50		112		27	3		91	77	30	54
·		61	42	77		78	84	10			114		38		42	68	83	57	32	107
Ŀ	•	•	26	56	38	•	93	37	76		104	106	30	29		90	43	57	15	109

Figure 11: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

PAGE 33 | IEEE 802.3bn

Parity Matrices for Code VII, Z = 240 & 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
238	85	•	•	17	•	27	129	204	18	•	•	2	99	62	73	•	•	141	29	84
238	25	•			125	113	47	•			51	236	89	177	65	145	107	54	•	91
	25	122			74		•	•	136	40	34	153	26			158	223	139	86	35
		122	63	67	100	93	•	5	•	25	•	•	110	76	167	176	25		141	199
[·	•	•	63	105	•	•	134	136	140	84	186	•	•	74	25	38	74	178	26	80

Figure 12: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
354	85	•	•	317	•	•	•	•	266	155	168	61	228	101	261	125	•	305	70	285
354	355	•	•		136	132	358	•		185	•	187	341	•	223	•	137	121	327	39
•	355	62	•		268	189	83	341			211			132	204	328	113	220		83
•		62	183	304	•	136	•	140	49	209	•		$\overline{7}$	261	327	6	349	•	28	278
[·		•	183	37	0		58	172	344		100	203			•	78	208	185	233	347

Figure 13: Base code information bits: 16; (max) block length: 20. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

PAGE 34 | IEEE 802.3bn

Parity Matrices for Code VIII, Z = 120 & 240

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	91	•	•	74	85	74	•	103	102	•	•	87	82	28	14	77	73	17	35	•	•	48	101	90
0	61	57				•	37	111	53	3	11		•	79	86		23	92	67	97	110	55	112	114
	61	0	107		86	110				81	•	82	113	•	108	2	75	•	88	80	78	9	61	113
	•	0	57	30	•	27	91		114	•	108	44	17	78		67		109		44	86	30	67	50
Ŀ	•		57	0	104	•	21	12		63	7	•	41	113	8	5	73	19	4	70	80	•	•	9

Figure 14: Base code information bits: 20; (max) block length: 24. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	122	•	•	237	•	•	•	14	143	•	79	213	115	197	•	•	166	88	118	114	54	113	210	180
0	62	•	•	•	229	95	82	•	•	47	137	4	•	•	123	185	78	•	183	0	94	51	146	131
	62	79	42	•	65	27	•	174	53	•	•		38	20	101	231	196	224	•	•	143	27	213	217
·	•	61	58	106	135		112	•	92	90	•	8	•	221	177	131	107	147	136	147	•	•	134	59
Ŀ	•	•	42	85	•	46	116	123	•	34	72	•	119	140	78	124	•	171	133	155	150	71	•	213

Figure 15: Base code information bits: 20; (max) block length: 24. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

PAGE 35 | IEEE 802.3bn

Parity Matrices for Code VIII, Z = 360and Code IX, Z = 120

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	$\overline{23}$	24
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	•	•	•	61	356	63	•	107	229	131	•	•	•	38	279	172	215	7	313	•	3	•	107	340
0	61	•	•	•	106	229	123	•	•	52	•	14	242	305	111	249	•	189	57	205	•	140	137	46
•	61	122	•	•	•	•	188	280	240	•	167	283	•	185	•	•	84	68	267	323	336	122	264	299
•	•	122	210	332	•	176	•	319	•	•	343	288	259	119	183	240	203	•	•	248	129	120	64	216
Ŀ	•	•	210	331	133	•	262	•	221	274	125	•	273	•	126	135	148	289	354	73	254	251	•	195

Figure 16: Base code information bits: 20; (max) block length: 24. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	91	•	•	72	23	•	•	•	47	•	34	53	114	5	61	97	106	•	•	86	19	6	•	53	79	6	112
0	61	11	•	•	2	•	89	68	117	43	•	7	•	31	29	112	88	86	7	•	10	62	69	58	85	•	9
	61	74	102	•	•	72	101	•	•	88	•	30	110	96	91	•	•	68	90	41	23	114	53	•	43	104	40
•		74	52	28	20	10	38	55	•	•	117			25		92	112	12	11	100	•	•	0	102	111	115	87
Ŀ	•	•	52	118	•	25	•	75	29	3	109	•	84	•	52	93	42	78	79	104	89	105	77	0		94	13

Figure 17: Base code information bits: 23; (max) block length: 27. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 120

PAGE 36 | IEEE 802.3bn

Orlando, FL

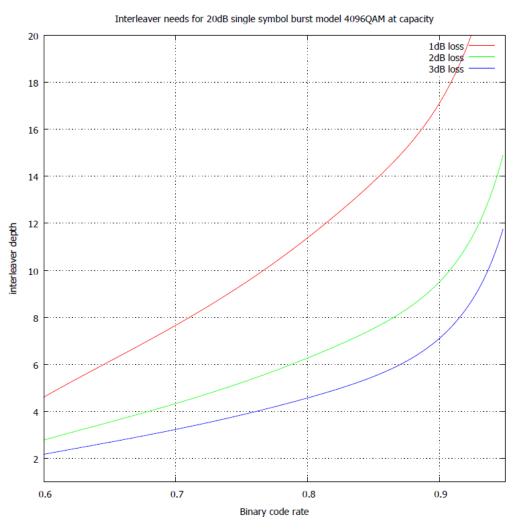
Parity Matrices for Code IX, Z = 240 & Z = 360

O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	173			216	52	25	141	173		238	•	•	172	71	•	•	62	128	46	•	16	70	129	7	108	•	94
0	113					•	•	•	193	126	•	164	197	81	15	146	94	195		99	43	66	80		162	109	47
	113	79	26		191		124	213	47	190	171				107		234	118	92	37	114		98	222		167	155
· ·		61	42	85	131	33	•	168	114		56	166	175			206	•	225	172	25	•	166	•	88	45	19	120
Ŀ		•	26	64	•	79	53	•		•	152	109		29	189	131	•		96	132	166	196	213	225	150	52	228

Figure 18: Base code information bits: 23; (max) block length: 27. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 240

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27]
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
1																											· /
354	•	•		220	•	97	68	205	315				•	222	252	55	210	•	355	170	278	200	10	233	279		322
354	241					174		216	76	170	318	88	239			0	306	257	27	98	85	217		135		64	117
	241	98			44	162	240				59		94	97	60	358	182	47	36			38	295	101	162	235	261
		98	57	351	58		124			188		39	325		346	93		316		101	284		135	35	111	268	110
			57	175	266			9	28	228	349	34		68			73	305	290	205	0	170	345		226	29	229

Figure 19: Base code information bits: 23; (max) block length: 27. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360


PAGE 37 | IEEE 802.3bn

Orlando, FL

Consideration on Time Interleaving Depth D

- The depth D of the time domain interleaving impacts how many QAM symbols of a code word are affected by burst noise
 - For a larger interleaving depth D less symbols of a code word are impacted and performance improves
 - The drawback of a large interleaving depth D is increased PHY latency
 - However, if the depth D is to small, BER performance does not reach the BER target of 1e-8 anymore
- Hence, an important metric is the required interleaving depth D to achieve BER = 1e-8 at a fixed AWGN SNR
 - Interleaving depths are provided in the following
- Comments on required interleaving depth D
 - It can be shown that the required interleaving depth D is related to the inverse of the code rate R, i.e. D ~ 1 / (1 – R)

Code Rate and Interleaving Depth

- In burst noise a higher AWGN SNR is needed for the same capacity
 - This increase in SNR is called loss in the figure
 - This can be seen as required SNR margin for burst noise
- For a given margin, the figure shows the required interleaving depth as a function of code rate
- Codes with higher rate require higher interleaving depth
 - In comparisons for burst noise performance, code rates must be identical