0

Carrier Frequency Offset and Initial PLC Acquisition

Steve Shellhammer (Qualcomm)

Abstract

- The purpose of this presentation is to give an overview of Carrier Frequency Offset in OFDM and discuss how it can impact initial PLC acquisition
- There are no Motions in this presentation

Carrier Frequency Offset

- The CLT and the CNU each include an oscillator
- The Task Force will need to specify the required accuracy of these oscillators
 - An implementation may implemented with an oscillator whose accuracy is better than that required by the standard
- The CLT utilizes its oscillator to generate the downstream carrier frequency, and the error in the CLT oscillator results in a downstream carrier frequency error
- Initially (before PLC acquisition) the CNU uses it oscillator to generate its local downstream carrier frequency
 - After PLC acquisition the CNU carrier frequency can be corrected based on the received downstream

Carrier Frequency Offset

 Oscillator accuracy is typically specified in terms of parts per million (ppm) to the worst case frequency error

<u>CLT</u>

- Oscillator accuracy in ppm is labeled: OSC_{CLT}
- If the carrier frequency is f_c (in MHz) then the worst case CLT frequency error (in Hz) is $\Delta f_{CLT} = f_c \times OSC_{CLT}$

<u>CNU</u>

• Similarly the worst case CNU frequency error is given by $\Delta f_{CNU} = f_c \times OSC_{CNU}$

Carrier Frequency Offset

 The carrier frequency offset, which is the worst case frequency difference between the CLT and CNU carrier frequencies, is the sum of the two worst case frequency errors

$$\Delta f = \Delta f_{CLT} + \Delta f_{CNU}$$

$$\Delta f = f_c(OSC_{CLT} + OSC_{CNU})$$

- The downstream band is between 54 and 1212 MHz, so we have the carrier frequency is less than 1212 MHz
- Use 1212 MHz as worst case carrier frequency

Worst Case Example

- The oscillator accuracy for the CLT and the CNU have not yet been specified
- Here we work out a worst case example

 $OSC_{CLT} = 100 \text{ ppm}$

 $OSC_{CNU} = 100 \text{ ppm}$

 $\Delta f = 1212 (100 + 100) = 242.4 \times 10^3 \text{ Hz} = 242.4 \text{ kHz}$

• If more accurate oscillators are used the carrier frequency offset will be lower

OFDM Tone Ambiguity at Acquisition

- At start up the CNU must search for the downstream
- It searches for the PLC on multiple frequencies
- When it tries a given frequency there will be some frequency offset between the downstream transmitter and the downstream receiver
- This frequency offset can lead to a tone ambiguity between if the carrier frequency is more than half the tone spacing
- EPoC has a 50 kHz tone spacing (4K FFT)

OFDM Tone Ambiguity at Acquisition

- Illustration of Tone Ambiguity
- For illustration purposes the FFT size in this example is 8 (small enough to draw)

- In this example the CNU tone ambiguity can be up to two tones on either side
- There are 5 possible tones which could be the correct tone

IEEE 802.3bn EPoC Task Force

Beijing, China

Tone Ambiguity for Worst Case Example

- In our worst case example (100 ppm in both the CLT and the CNU) the tone ambiguity can be up to 5 tones on each side of the correct tone
- So there are 11 candidate tones for the correct tone to frequency align with the CLT
- The number can be reduced by requiring more accurate oscillators, but has an impact on the implementation
- May need some way to disambiguate the tones

Tone Disambiguation

- Method #1: Preamble Design
 - Null every M-th Tone in a portion of the preamble to increase tone spacing for that section (method used in 802.11 OFDM PHY)
 - Must increase non-zero tone spacing in this portion of preamble to eliminate tone ambiguity
- Method #2: Utilization of continuous pilots
 - Method suggested by Leo (in email)
 - If the continuous pilots are in known tones relative to the PLC they could be used to disambiguate tones
 - Since the tone location is configurable, I am not sure if their location to the PLC is known a priori by the CNU

Next Steps

- The Task Force needs to specify the oscillator accuracy for both the CLT and the CNU
- The Task Force needs to evaluate the various methods to disambiguate the tones and decide which method to use