Coax Resource Allocation & Tone Reordering

www.huawei.com

Pandao / Duane Remein Version: V1.0(20130503) HUAWEI TECHNOLOGIES CO., LTD.

Problem with MMP/Capacity

- There is no problem calculating Capacity when there is only one profile
- However with MMP a problem exists
 - RB's in different profiles will not have the same capacity ratio
 - Burst Start time position will be different and may overlap in frequency
 - See illustration in [1]

HUAWEI TECHNOLOGIES CO., LTD.

• Tone Reordering – a type of Frequency interleaving

- Objective is to rearrange sub-carrier order so as to force the capacity of each Resource Block to be as close to the same as possible
- Two Examples
 - Example 1 uses a "high low" algorithm
 - Example 2 uses a "best average" algorithm

example 1

• An example algorithm

- Tones are reordered by alternating between low order tones and high order tones
 - Additional improvements possible

example 1

HUAWEI TECHNOLOGIES CO., LTD.

example 2

• Another example algorithm

- Tones are reordered so that the running average most closely approaches the average over the entire spectrum as possible
- Objective is to make the bitloading distribution as smooth as posible over the entire frequency range

HUAWEI TECHNOLOGIES CO., LTD.

- After reordering, bitloading is smoothly distributed across frequency spectrum
 - When you take a number of adjacent subcarriers (M) from the reordered table, they can be described with the equation:

$Cm = (C \times M) / N$

- Where:Cm is the capacity of M subcarriersC is the total capacity of the symbol
 - N is the total number of available subcarriers in a symbol
- The result is not completely flat but is very close, and as the number of subcarriers increases the result becomes flatter
 - Need to round number of RB's up to ensure the transmission is ≥ the length (in TQ) in the GATE

example 2

Simulation results:

- After reordering, the profile is smoothly distributed across frequencies
 - Left diagram is the bit loading table of two profiles after reordering
 - Right diagram is the average bitload per RB after tone reordering (RB size is 8 subcarriers)
 - Average bit loading per RB fluctuats around average bit loading per entire symbol, which means the error will not increase when RB number of allocation increased

HUAWEI TECHNOLOGIES CO., LTD.

How reordering can solve the problem with MMP

• Illustration for Multiple profiles

Profile 1&2 with the same reordering table

HUAWEI TECHNOLOGIES CO., LTD.

remein_02_3bn_0513

Impact to standard

- Tone table (sub-carrier & bit loading) must be generated for reordering
- Additional function needed in PHY layer for transmit and receive
 - RX process is inverse of TX process
 - Tone reordering is one kind of frequency interleaving
 - objective is capacity leveling
 - may still need frequency interleaving for burst noise protection (not addressed here)
 - QAM modulation and demodulation will be based on reordered table

Thank you www.huawei.com

References

[1] - boyd_3bn_04a_0313.pdf

HUAWEI TECHNOLOGIES CO., LTD.

remein_02_3bn_0513

