0

EPoC Feature Matrix and Specification Impact

Patrick Stupar, Andrea Garavaglia and Juan Montojo (Qualcomm) – 12-15 November 2012

San Antonio,TX

12-15 November 2012

Scope of the presentation

- This presentation aims at analyzing the impact to MAC/RS and PCS layers (and their interactions) of some features that have been discussed and raised as requirements for MCS and adaptive bit-loading
- In particular, the focus of the presentation is to illustrate the impact of those features on the specification

0

Feature analysis: Fixed MCS or bit-loading per plant in DS

- This configurations assume one common bit-loading curve or one common MCS for all the CNUs in DS
- For each CNU the number of bits that can be transmitted in DS for each OFDM symbol is fixed and is the same
 - The amount of data that is sent in a time window equal to the OFDM symbol is independent from the destination CNUs

Example of solution

- Time-to-time/frequency mapping in the PHY layer of the CLT can be used to transmit data
 - It is sufficient for the MAC control to know the data rate for IDLE insertion
 - RS-PCS interface just transfer data to the PHY
- When a CNU newly register to the plant, it may happen that the selected MCS would need to be changed and all other CNU needs to be informed

Feature Matrix - Downstream

Features	MAC/MPCP		PHY		Comment
	MPCP protocol (message format)	MAC control	RS/PCS interface	PCS	
Fixed MCS per plant (no bit loading) – DS		CLT aware of PHY layer rate		Time-to- time/frequency mapping in CLT	Need to inform CNUs in case of changed MCS
Bit-loading per plant – DS		CLT aware of PHY layer rate		Time-to- time/frequency mapping in CLT	

Feature analysis: MCS or bit-loading per CNU in DS

- The MCS (or bit-loading curve) is different for each CNU (or CNU group) in DS
- For each CNU the number of bits that can be transmitted for each OFDM symbol can be different
 - The amount of data that is sent in a time window equal to the OFDM symbol is dependent from the destination CNUs

Example of solution

- Time-to-time/frequency mapping in the PHY layer of the CLT can be used to transmit data
 - It is sufficient for the MAC control to know the data rate for IDLE insertion for each destination CNU
 - IDLE insertion can be done packet-by-packet no significant complexity added
 - RS-PCS interface just transfer data to the PHY
 - The PCS need to map to the proper MCS the packets received from the MAC layer based on the packet destination

Time – to – time/frequency mapping in DS

- In this presentation the time-to-time/frequency mapping has been considered to minimize the impacts to MAC control
 - With this feature gating is assigned only using time domain
- For DS with bit loading per CNU this solution has an issue on the idle insertion
 - Idle insertion can be done per packet, i.e. the idle are inserted for each packet to map the XGMII rate with the one on the physical channel. This depends on
 - The destination CNU
 - The portion of the spectrum where the packet is sent
 - Assuming the same amount of frame bytes, the number of idle inserted in a OFDM symbol time window is not constant
- As a consequence, idle insertion requires the MAC control to be aware of the beginning of the OFDM symbol and the bitloading profile for each CNU
 - This implies extensions to the RS/PCS interface

IEEE 802.3bn

San Antonio,TX

Feature Matrix - Downstream

Features	MAC/MPCP		PHY		Comment
	MPCP protocol (message format)	MAC control	RS/PCS interface	PCS	
Bit-loading per CNU group – DS		CLT aware of MCS or bit- loading profile for each CNU	CLT- OFDM symbol start	Proper coding per CNU destination + Time-to- time/frequency mapping in CLT	Coding not considered
MCS per CNU group – DS		CLT aware of MCS or bit- loading profile for each CNU		Proper MCS based on CNU destination + Time-to- time/frequency mapping in CLT	Coding not considered

Feature analysis: Fixed MCS per plant in US

- This configuration assumes a common MCS for all the CNUs in US
- For each CNU the number of bits that can be transmitted in US for each OFDM sub-carrier is the same
 - The amount of data that is sent in a time window equal to the OFDM symbol is
 - Independent from the spectrum chunk used by the CNU
 - The same for all the CNU

Example of solution

- Time-to-time/frequency mapping in the PHY layer of the CNU can be used to transmit data
 - It is sufficient for the MAC Control to know the data rate for IDLE insertion
 - RS-PCS interface just transfer data to the PHY
 - MPCP gating can be performed on the time domain only
- When a CNU newly register to the plant, it may happen that the selected MCS would need to be changed and all other CNU needs to be informed

Feature analysis: MCS per CNU in US

- This configurations assume different MCS for the CNUs in US
- For each CNU the number of bits that can be transmitted in US for each OFDM sub-carrier is the same
 - The amount of data that is sent in a time window equal to the OFDM symbol is
 - Independent from the spectrum chunk used by the CNU
 - Different for the CNUs

Example of solution

- Time-to-time/frequency mapping in the PHY layer of the CNU can be used to transmit data
 - It is sufficient for the MAC control to know the data rate for IDLE insertion
 - RS-PCS interface just transfer data to the PHY
 - MPCP gating can be performed on the time domain only

San Antonio, TX

Feature Matrix - Upstream

Features	MAC/MPCP		РНҮ		Comment
	MPCP protocol (message format)	MAC control	RS/PCS interface	PCS	
Fixed MCS per plant (no bit loading) – US		CNU aware of PHY layer rate		Time-to- time/frequen cy mapping in CNU	Need to inform CNUs in case of changed MCS
MCS per CNU group – US		CNU aware of PHY layer rate		Time-to- time/frequen cy mapping in CNU	

Time – to – time/frequency mapping in US

- In this presentation the time-to-time/frequency mapping has been considered to minimize the changes to MAC and MPCP
 - With this feature gating is assigned only using time domain
- For US with bit loading this solution has an issue
 - For a CNU the number of bits that can be transmitted in US for a given time window can change
- Additional interaction/extensions are required to enable this feature (see next slide)

- Approach a)
 - Usage of time to time/frequency mapping
 - Gating is performed at time domain only
 - MPCP gate include only grants on the time domain
 - Time domain is mapped in time/frequency at the PHY layer
 - CNU MAC control awareness of
 - OFDM symbol window start instant
 - This requires extensions to RS/PCS interface
 - Bit-loading profile
 - Time-to-time/frequency mapping
 - CNU MAC control uses the inputs to find out the number of bits that can be sent to the PHY when using the grant

• Approach b)

- No usage of time to time/frequency mapping
- Gating performed on time and frequency
 - Grant allocates time and frequency windows
 - CLT allocates grants in frequency and time
- The CNU MAC control indicates to the PHY layer the frequency portions where packets must be allocated

Feature analysis: bit-loading in US

- Two possible configurations
 - Bit-loading per plant
 - Different sub-carriers for a CNU can transmit different amount of bits
 - The same sub-carrier for different CNUs transmit the same amount of bits
 - Bit-loading per CNU
 - Different sub-carriers for a CNU can transmit different amount of bits
 - The same sub-carrier for different CNUs can transmit different amount of bits
- Approach a) and b) can be used for both configurations
 - Bit-loading per plant requires update of bit-loading profile upon entry/exit of CNUs

Feature Matrix - Upstream

Features	MAC/MPCP MPCP MAC		PHY RS/PCS PCS		Comment
	protocol (message format)	control	interface		
Bit-loading per plant – US	<u>Approach</u> <u>b)</u> grant of Gate message with frequency	CNU aware of PHY layer bit-loading profile	<u>Approach a)</u> CNU- OFDM symbol start <u>Approach b)</u> CNU- indicate	<u>Approach a)</u> Time-to- time/frequency mapping in CNU	Need to inform CNUs in case of changed MCS
Bit-loading per CNU – US	allocation		frequency mapping of packets		

IEEE 802.3bn

Conclusions

- An impact survey of possible extensions required to cope with bit-loading/adaptive MCS has been provided
- The usage of MCS per plant or MCS for different (group of) CNUs (in DS and US) requires changes to:
 - MAC control
 - PCS
- The usage of bit-loading per plant or bit-loading for different (group of) CNUs (in DS and US) requires changes to:
 - MAC control
 - PCS
 - RS/PCS interface

• THANK YOU