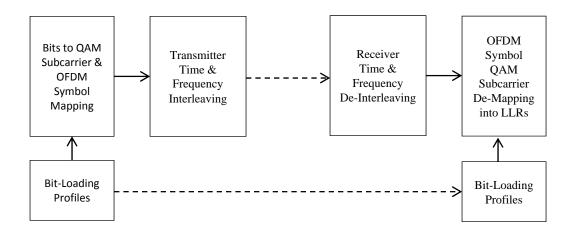
Downstream Bit Loading Procedure


Jin Zhang (Marvell)

Outline of DS Bit Loading

- Load bits according to the bit loading profiles.
- The bit loading profile is defined in transmitted subcarrier domain.
- The bit loaded symbols are subject to time and frequency interleaver.
- The scattered pilot pattern changes for each OFDM symbol, which needs to be taken into account during bit loading.
- A placeholder has to be reserved for scattered pilot during bit loading

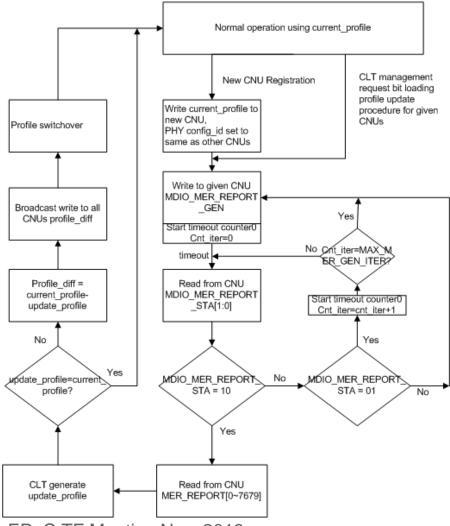
Bit Loading and Interleaving

Diagram from DOCSIS 3.1

Summary for DS Bit Loading Procedure

- Profile i: A_i(k), k=0, ..., N-1, N=4096/8092
- Let N_I be the set of all indexes excluding continuous pilots, exclusion subcarriers, PLC subcarriers, B_i(k) represents profile for k=0, ..., N_I.
- Let C_i(k)=P⁻¹(B_i(k)), where P is the frequency interleaver. P⁻¹ is the inverse function of P.
- Let D(k, j)=1 denote the presence of scattered pilots at subcarrier k and OFDM symbol j before the frequency interleaver. Note: D(k,j) varies for different OFDM symbols.
- Load each of N_l subcarrier of OFDM symbol j with $C_i(k)$ bits, $k=0, ..., N_l$ Whenever hitting D(k,j), that subcarrier is skipped from loading bits.
- D(k,j) needs to be tracked for each frame.

Outline of FDD Bit Loading Profile Update


- Single Modulation Profile for DS FDD (TD #19)
- Each CNU generates different MER measurements, corresponding to different profiles.
- CLT should discretionally choose the single modulation profile that meets the capability of all CNUs, for example, LCD for all profiles.
- The particular bit loading algorithm should be implementation specific.
- The MER measurement is transmitted through the US PHY link channel upon request by CLT.
- The modulation profile is transmitted to each CNU through DS PLC.

When to Update the Bit Loading Profile

- New CNU registration.
- Request from CLT management plane
- CNU may also need to initiate the bit loading profile update for various reasons, for example: bad frame loss ratio
 - CNU is passive, only responds to the instruction from CLT.
 - Use MAC Report message? No, MAC cannot see frame loss.
 - CLT needs to periodically read FER from each CNU.

```
CNU_FER[7:0]: a_2a_1a_0e_4e_3e_2e_1e_0 represent 0.1a_2a_1a_0*2^{-1}(-e_4e_3e_2e_1e_0)
```

CLT Bit Loading Profile Update

Data Format of Profile

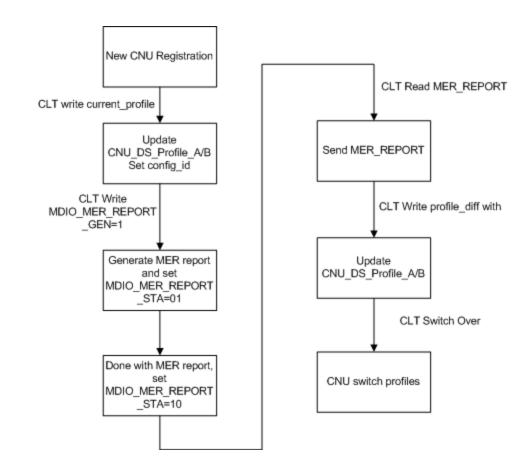
Code	Modulation	Code	Modulation
0000	OFF	1000	256-QAM
0001	BPSK	1001	512-QAM
0010	QPSK	1010	1024-QAM
0011	8-QAM	1011	2048-QAM
0100	16-QAM	1100	4096-QAM
0101	32-QAM	1101	8192- QAM(optional)
0110	64-QAM	1110	16384- QAM(Optional)
0111	128-QAM		

Instruction to Write Profile

- Use PLC write instruction
- Each profile needs 7680/4=1920 words. (For 8192FFT)
- CNU needs to maintain two profiles
 - CNU_DS_Profile_A[0~N-1][15:0]
 - CNU_DS_Profile_B[0~N-1][15:0]
 - N = 1920 for 8192 FFT, N = 960 for 4096 FFT
- May have a lot of consecutive carriers with same modulation order
- Use two modes to send bit loading profile
 - Direct Mode: PROFILE_WRITE_MODE=0, the address specify the subcarrier index. Can write 32*4=128 subcarriers for one write command
 - Block Mode: PROFILE_WRITE_MODE=1, the first address specify the start subcarrier index, then followed by the number of subcarriers in a block, the bit loading size for the whole block.

Direct Mode Operation

PLC Instr.	Register	Length (bits)	Count (0~31)	Value	Note:
1	PROFILE_ WRITE_M ODE	1	0	0	Direct mode
2	CNU_DS_ Profile_A/ B[k]	13	0~31	vary	Send up to 128 profile element

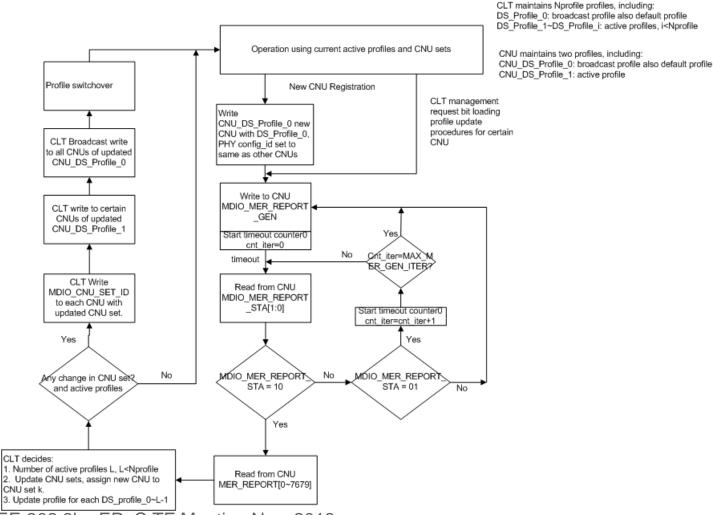

Block Mode Operation

PLC Instr.	Register	Length (bits)	Count (0~31)	Value	Note:
1	PROFILE_ WRITE_M ODE	1	0	1	Block mode
2	PROFILE_ WRITE_B LOCK_ST ART	13	0	vary	Start index
3	PROFILE_ WRITE_B LOCK_SIZ E	13	0	vary	Size of the block of profile elements
4 IEEE 802.3bn E	PROFILE_V WRITE_V ALUE PoC TF Meeting		0	vary	The value of the profile block.

FDD CNU MIDO Registers

MDIO Registers	Description
CNU_DS_Profile_A[0~N-1][15:0] CNU_DS_Profile_B[0~N-1][15:0]	DS profiles, N = 1920 for 8192 FFT, N = 960 for 4096 FFT. A/B profiles used for hitless switch
MER_REPORT_GEN	1: Start generation of MER report for CNU0: Not start
MER_REPORT_STA[1:0]	Status of MER reporting 00: Not start 01: Generating a new MER report 10: New MER report ready 11: Error when generating MER report
MER_REPORT[0~Nc-1][15:0] IEEE 802.3bn EPoC TF Meeting Nov. 2013	MER report. 8 bits for each carrier. Each word contains two subcarriers. xxxxxx.xx dB, 0~63.75dB Nc=3840 for 8192FFT Nc=1920 for 4096FFT

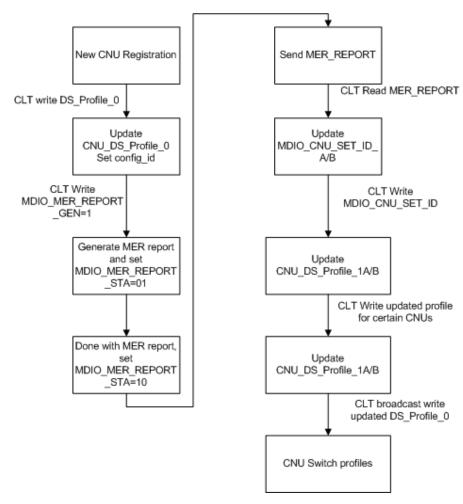
FDD CNU Diagram of Bit loading


Outline of TDD DS Bit Loading Profile Update

- Support MMP for TDD DS, because TDD DS is in nature bursty. (TD #19)
- CLT maintains up to Nprofile different DS profiles, including one broadcast profile (default profile), and Nprofile-1 individual profiles.
- CLT assigns each CNU in one of Nprofile-1 CNU sets.
- It is implementation specific for CLT to choose the number of active profiles, the CNU sets, and each profile.

CLT Behavior for Bit Loading Profile Update

- Upon new registration, the CLT needs to send broadcast profile (default profile) to new CNU.
- CLT shall enable the MER reporting for new CNU.
- After obtaining MER report from CNU, the CLT shall decide
 - Change of active profiles
 - Change of CNU set.
 - Notify each CNU of changed set with profile_update.
- CLT maintains Nprofile profiles, including:
 - DS_Profile_0: broadcast profile also default profile
 - DS_Profile_1~DS_Profile_i: active profiles, i<Nprofile


CLT Diagram for Bit Loading Profile Update

TDD CNU MIDO Registers

MDIO Registers	Description
CNU_DS_Profile_0A[0~N-1][15:0] CNU_DS_Profile_0B[0~N-1][15:0] CNU_DS_Profile_1A[0~N-1][15:0] CNU_DS_Profile_1B[0~N-1][15:0]	DS profiles, N = 1920 for 8192 FFT, N = 960 for 4096 FFT. A/B profiles used for hitless switch. CNU_DS_Profile_0x is used for broadcast, and CNU_DS_Profile_1x is used for unicast
MER_REPORT_GEN	1: Start generation of MER report for CNU0: Not start
MER_REPORT_STA[1:0]	Status of MER reporting 00: Not start 01: Generating a new MER report 10: New MER report ready 11: Error when generating MER report
MER_REPORT[0~Nc-1][15:0] IEEE 802.3bn EPoC TF Meeting Nov. 2013	MER report. 8 bits for each carrier. Each word contains two subcarriers. xxxxxx.xx dB, 0~63.75dB Nc=3840 for 8192FFT Nc=1920 for 4096FFT
- CNU_SET_ID_A[2:0]	CNU_SET_ID corresponds to the

TDD CNU Diagram for Bit Loading

Conclusions

- The EPoC bit loading procedure is similar to that in DOCSIS 3.1.
- Without much help from MAC management message, the bit loading profiles need to be maintained through PLC.
- Instruction sequence regarding the generation and updating of bit loading profiles need to be specified in the standard.
- The implementation of bit loading profile generation at the CLT and MER report generation at CNU are beyond the scope of this TF.

Proposed Motion (New Slide)

- Adopt zhang_3bn_02a_1113 page 5~18 as a starting point towards baseline proposal for the procedure of updating the bit loading profiles for DS.
- Yes
- No
- Abstain