

Eugene DAI Cox Communications

IEEE 802.3 Interim Meeting September 24th -28th, 2012 Geneva, Switzerland

Supporters

|--|

Bill Powell	Alcatel - Lucent	
Doug Jones	Comcast	
Edward Boyd	Broadcom	
Edwin Mallette	Bright House Networks	
Jeff Finkelstein	Cox Communications	
John Dickinson	Bright House Networks	
Marek Hajduczenia	enia ZTE	
Richard Prodan	Broadcom	

Outline

- General bandwidth assignment considerations
- OFMDA Downstream and MAC layer requirements
- OFDM Downstream and MAC layer requirements
- OFDMA Upstream and MAC layer requirements
- Conclusions

This is a baseline proposal of bandwidth assignment methods for EPOC

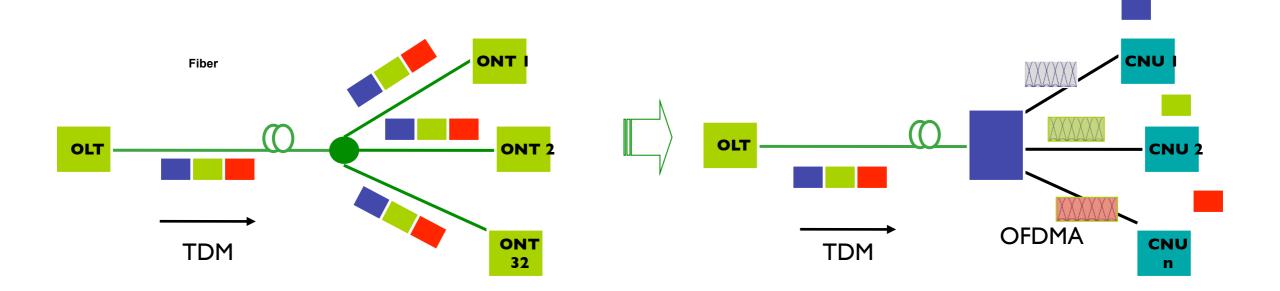
- Narrow band receiver
 - Lower cost and lower power consumption
 - Suitable for OFDMA
 - Need control message for tuning
- Bandwidth assignment considerations for narrow band receiver
 - Choose adjacent subcarriers/subcarrier groups
 - All subcarriers/group start and stop transmission simultaneously to simplify control message
- Full-band/wideband receiver
 - No tuning is needed, simplify MAC control
 - Works especially well with EPON MAC
 - Suitable for OFDM
 - May consume more power
- Bandwidth assignment considerations for full band/wideband receiver
 - Subcarrier/group does not have to be adjacent
 - Need to consider guard band between OFDM channels and SC QAM channels

- Upstream maximum bandwidth range option: 5MHz to 200 MHz
 - 195 MHz maximum useable bandwidth
 - 5 MHz to 42 MHz range could be reserved for DOCSIS during the coexist period
- Downstream maximum bandwidth range option: 300 MHz to 1.1 GHz
 - 800 MHz maximum useable bandwidth
 - TF could define a evolutional or stepped approach
 - For example steps with 200 MHz, 400MHz, 600MHz, etc.
 - Corresponding downstream spectra range:
 - -300 MHz to 500 MHz
 - -300 MHz to 700 MHz
 - -300 MHz to 900 MHz
 - -300 MHz to 1.1 GHz
- 85 MHz mid-split and high-band split (high band upstream) are another options

MAC requirements for OFDMA Downstream

- Scheduling for EPOC OFDMA downstream
 - Hybrid TDMA and OFDMA scheduler
 - 2 dimensional (time and subcarrier)
 - Need control messages for tuning or digital tuning
- EPON does not have downstream scheduling mechanism
 - Need a new downstream message similar to GATE message
 - Start Subcarrier (SSC)
 - Start Subcarrier Group (SSCR)
 - Number of Subcarriers (NSC)
 - Number of Subcarrier Group (NSCG)

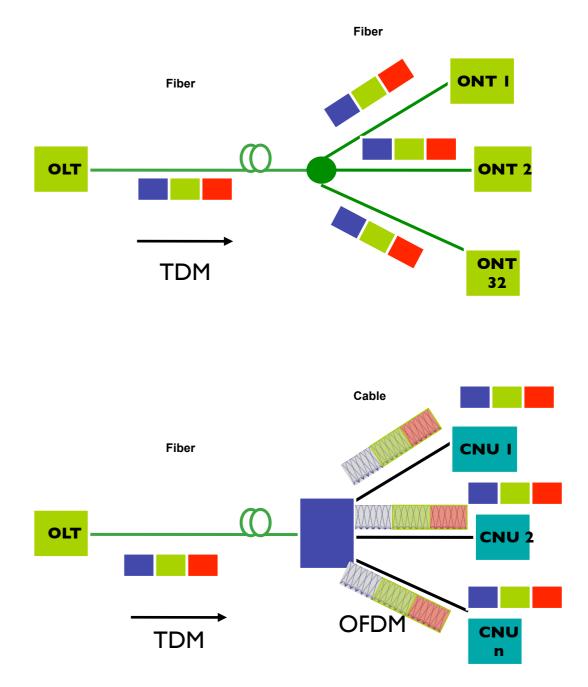
Example:


New MPCP CNU receiver configuration WINDOW message

Byte

6	DA
6	SA
2	Length/Type =0x8808
2	Opcode = TBD
4	Time stamp
2	SSC/SSCR
2	NSC/NSCG
36	PAD
4	FCS

- A new MPCP RX_Conf_Window message is needed to configure CNU receivers
 - A major change to MPCP; not "minimum augmentation"
 - New hardware may required; current EPON MAC does not support
 - Backward compatibility is a problem
- Change DS P2M shared physical "channel" to P2P physical "channels"
 - How to deal with multicast and broadcast?
 - OFDMA multicast and broadcast channels?
 - Implementation complexity



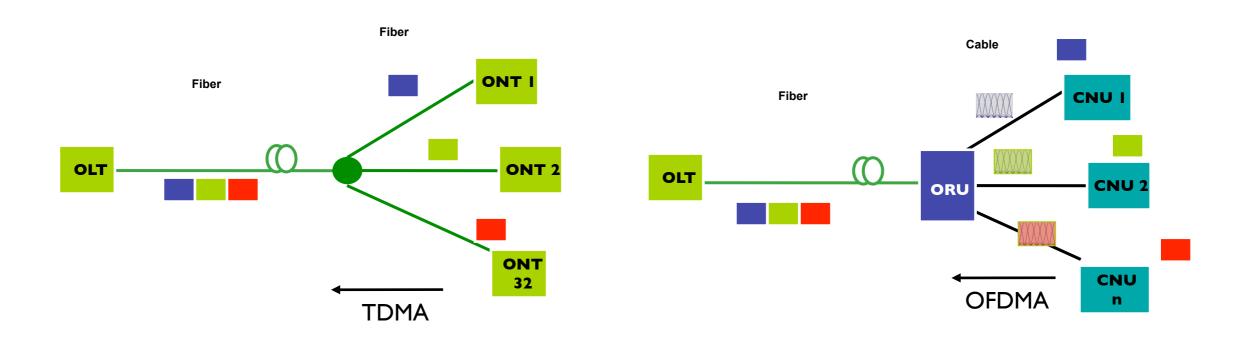
MAC requirements for OFDM Downstream

- No scheduling is needed for EPOC OFDM downstream
 - Keep EPON TDM
 - 1 dimensional scheduling
- Full band capture enables CNU to directly decode EPON MAC frames
 - OFDM RX replaces Optical RX
 - DS subcarrier assignment is controlled by OLT; CNUs do not need to know
 - CNU MAC implementation is the same as that of ONU
 - No new MAC control message is needed
 - An EPOC system behaves the same way as an EPON system
 - Multicast and broadcast

MAC requirements for OFDMA Upstream

• Mapping TDMA to OFDMA

- Allow parallel transmission, Reduce latency
- Could be done with NO MAC changes
 - For example, direct time to time/ frequency mapping
- In worst case it may need new control messages for upstream subcarrier assignment
 - Could be done with extension to the MPCP GATE message
 - Assuming PHY layer negotiations completed
- Example of extension of GATE
 message
 - Grant n Start Subcarrier (SSC)
 - Grant n Start Subcarrier Groups
 - Grant n Number of Subcarriers (NSC)
 - Grant n Number of Subcarrier Groups (NSCR)


Example of MPCP GATE extension:

Byte

6	DA
6	SA
2	Length/Type =0x8808
2	Opcode = TBD
4	Time stamp
1	Number of Grant
4	Grant 1 start time
4	Grant 1 Length
2	Grant 1 SSC/SSCR
2	Grant 1 NSC/NSCR
	Grant 2
3-39	PAD
4	FCS

- OFDMA can be implemented with no changes to MPCP (recommended approach)
- If OFDMA requires changes to MPCP
 - Changes can be minimum and limited to the extension of GATE message only
 - Might result in hardware changes if MPCP processing is implemented in hardware
- In either case the P2P upstream topology is maintained without any changes

- OFDMA downstream needs a new MPCP message, similar to GATE message, is considered a major change
- OFDMA downstream for EPON introduces implementation complexities
 - May need hardware change
 - System behavior of EPOC may be different from that of EPON
- OFDM downstream does not need any change to MPCP
 - No hardware change is needed
 - An EPOC system behaves the same as EPON
- OFDMA upstream allows parallel transmission to reduce latency
 - No or minimum hardware changes

We propose OFDM downstream and OFDMA upstream for EPOC as the baseline

Thanks

