FORWARD ERROR CORRECTION PROPOSAL FOR EPOC PHY LAYER

IEEE 802.3bn EPoC - SEPTEMBER 2012

Richard S. Prodan, Avi Kliger, Tom Kolze, BZ Shen Broadcom

DVB-C2 VS. BRCM FEC STRUCTURE ON AWGN CHANNEL

BRCM FEC

- Single LDPC code
- Codeword size: 12000
- Code rate 75%
- Use set-partition LDPC code on 4-LSB's for all QAM constellations
- Apply both even-bit and odd-bit QAM constellations
- No need for BCH outer code in AWGN channel (no error floor problem)
- No Frequency Domain Interleaving
- Use shortening to provide 0.5 bit/symbol increments (with BCH outer code)

DVB-C2 FEC

- 6 different LDPC codes (one for each code rate)
- Code rates: 4/9, 2/3, 11/15, 7/9, 37/45, 8/9
- Codeword size: 16200
- Code all QAM symbol bits
- Need BCH outer code (error floor mitigation)
- Use interleaving within one LDPC codeword
- Only on even-bits QAM constellations

BROADCOM.

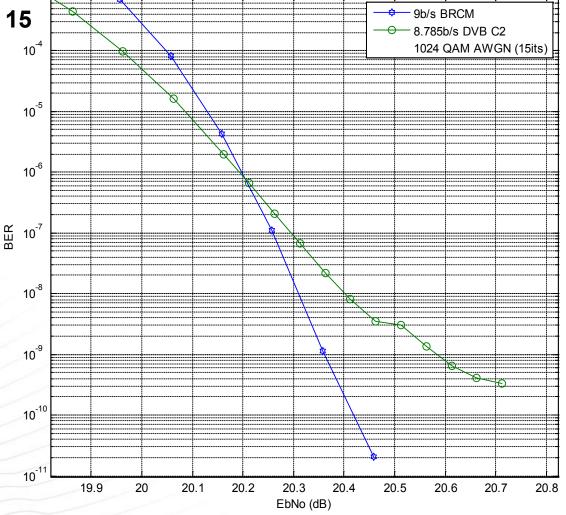
Approach

- LDPC Code applied to 4 Least Significant Bits of an QAM symbol
- Uncoded bits use Set Partitioning to maximize distance

Benefits

- Combined coding and modulation maintains error correction performance (coding gain) with a lower rate (stronger) code for the LSB's with the same overall higher code rate
- LDPC decoder rate is reduced by 4/M for M bit QAM symbols
- Reduction in decoder complexity

PERFORMANCE ON 1024-QAM (AWGN)


Max number of iterations: 15

SNR@ 1E-8

- BRCM: 20.31dB
- DVB-C2: 20.4dB
- Difference: 0.09dB

SNR@1E-10

- BRCM: 20.41dB
- DVB-C2: >20.71dB
- Difference: >0.3dB

BROADCOM.

Approach

- Use conventional even (square) QAM constellations
 - 256-QAM, 1024-QAM, 4096-QAM
- Add odd (cross) QAM constellations
 - 512-QAM, 2048-QAM

Benefits

- Provides finer granularity in spectral efficiency choices
- Provides finer granularity in SNR threshold choices

512-QAM MAPPING

BRCM, four coded bits, 512-QAM

							00010																
i i					00001			00000	00001	00011	00010	10000	10001	10011	10010	10000		10011	10010				
2 2				1111		1111	1111 00010	1011		1011				1011	1011		11111	1111			5	2	-
3		;		1101	1101	1101	1101	1001	1001	1001	1001	1001	1001	1001	1001	1101	1101	1101	1101		8	3	
				1100	1100	1100	00010 1100	1000	1000	1000	1000	1000	1000	1000	1000	1100	1100	1100	1100			20 V	
							01110 1010																10110 1010
	00101 1011						01110 1011							11011 1011		11100 1011			11110		10101 1011	10111 1011	10110 1011
	00101			01100			01110 1001							11011 1001	11010 1001	11100 1001			11110		10101	10111 1001	10110 1001
		00111					01110								11010	11100			11110	10100	10101		10110
00100	00101	00111	00110	01100	01101	01111	01110	01000	01001	01011	01010	11000	11001	11011	11010	11100	11101	11111	11110	10100	10101	10111	10110
00100	00101	00111	00110	01100	01101	01111	1110 01110	01000	01001	01011	01010	11000	11001	11011	11010	11100	11101	11111		10100		10111	
	1111 00101	1111 00111		1111 01100			1111 01110	1111 01000						1111 11011		1111				1111		1111 10111	1111 10110
	1.11	1101					1101 01110			20000									1101		1101		1101
1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
		00111 0110				01111 0110	01110 0110	01000						0110					0110	10100 0110	0110	10111 0110	0110
	00101 0111			01100 0111		01111 0111		01000 0111		01011 0111			11001 0111	11011 0111		11100 0111			11110 0111	10100 0111		1 2 3 3 3 3	10110 0111
	00101 0101	00111 0101		01100 0101		01111 0101		01000 0101						11011 0101		11100 0101		11111 0101		10100 0101	10101 0101	10111 0101	10110 0101
00100	00101 0100	00111 0100	00110 0100	01100	01101	01111 0100	01110	01000 0100	01001	01011 0100	01010	11000 0100	11001 0100							10100 0100	10101 0100		10110 0100
00100	00101	00111	00110	01100	01101	01111	01110	01000	01001	01011	01010	11000	11001	11011	11010	11100	11101	11111	11110	10100	10101	10111	10110
5.5.5.5	00101	00111	00110	x505.0.5.	01101		01110		01001		01010	11000	11001	11011	11010	5505			11110	0.5.5.6.5		10111	0.0.0.0
00100	00101	00111	00110	01100	01101	01111	01110	01000	01001	01011	01010	11000	11001	11011	11010	11100	11101	11111	11110	10100	10101	10111	10110
0001		0001 00111		0001		0001	01110	0001 01000		0001				0001 11011		0001 11100	0001	0001	0001	0001	0001	0001 10111	0001 10110
0000	0000	0000	0000	0000	0000	0000		0000 00000		0000		100000000000000000000000000000000000000		0000		0000			0000	0000	0000	0000	0000
3 3				0110		0110	0110	0010	0010	0010		0010	0010		0010	0110	0110		0110		2	5 <u> </u> 6	
				0111	0111	0111	0111	0011	0011	0011	0011	0011	0011	0011	0011	0111	0111	0111	0111			16 - 17 	
				00000	00001	00011 0101	00010 0101	00000 0001	00001 0001	00011 0001	00010 0001	10000 0001	10001 0001	10011 0001	10010 0001	10000 0101	10001 0101	10011 0101	10010 0101				
					00001		00010						10001										

Coded bits (LSB's) are grey-coded along each axis

BROADCOM.

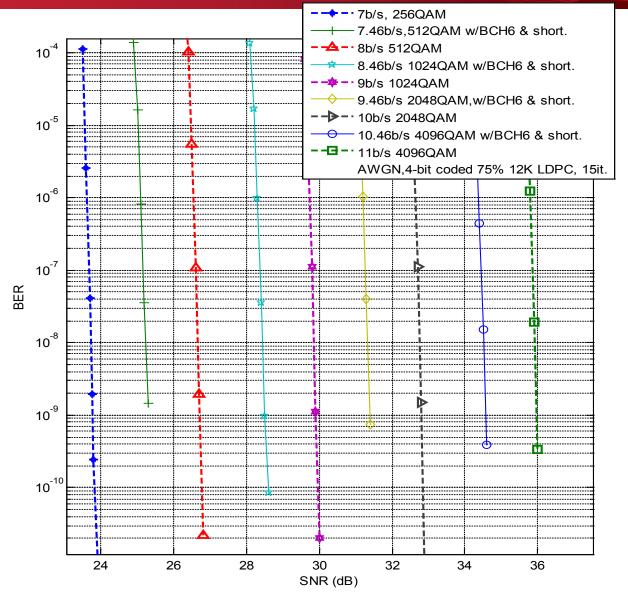
Approach

- Use a shortened LDPC codeword for the 4 LSB's as the inner code
- Add a very high code rate BCH outer code over the LDPC information bits and the uncoded bits of the partial bit coded QAM symbols containing the LDPC codeword

Benefits

- Provides finer granularity in spectral efficiency choices
- Only a single LDPC code is used
- Reduction in decoder complexity

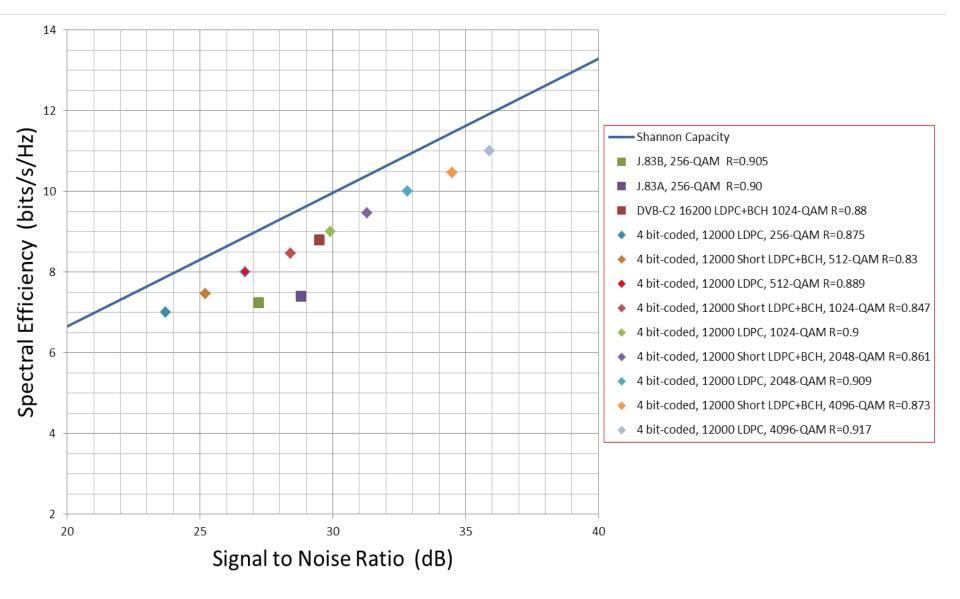
BCH OUTER CODE WITH SHORTENED LDPC INNER CODE


- LDPC inner code shorting size: 4000 bit
- LDPC information bits after shortening: k=9000-4000=5000
- LDPC total bits after shortening: n=12000-4000=8000
- BCH codeword size: k+(n/4)*u (where u = number of uncoded bits/symbol)
- Binary BCH code with working field GF(2¹⁵)

[]]]]	QAM S	Symbols	BCH outer code					
Constellation	Symbol size	Number of coded bits	Number of uncoded bits	BCH codeword size	Number of correctable bits	Number of redundancy bits		
512	9	4	5	15000	6	90		
1024	10	4	6	17000	6	90		
2048	11	4	7	19000	6	90		
4096	12	4	8	21000	6	90		

QAM symbol	coded	uncoded	Shorten	BCH correction	BCH codeword	BCH check	# Max	Overall	Bits/	b/s distance to the previous	SNR @10 ⁻⁸ BER	SNR distance to the previous
size	bits	bits	size	t	size	bits	iterations	rate	symbol	one	(dB)	one
8	4	4	0	0	0	0	15	0.875	7		23.7	
9	4	5	4000	6	15000	90	15	0.828	7.46	0.46	25.2	1.5
9	4	5	0	0	0	0	15	0.889	8	0.54	26.7	1.5
10	4	6	4000	6	17000	90	15	0.846	8.46	0.46	28.4	1.7
10	4	6	0	0	0	0	15	0.9	9	0.54	29.9	1.5
11	4	7	4000	6	19000	90	15	0.86	9.46	0.46	31.3	1.4
11	4	7	0	0	0	0	15	0.909	10	0.54	32.8	1.5
12	4	8	4000	46	21000	90	15	0.871	10.46	0.46	34.5	1.7
12	4	8	0	0	0	0	15	0.917	11	0.54	35.9	1.4

256 TO 4096-QAM AND SHORTENING WITH BCH T=6 PERFORMANCE CURVES



Max 15 iterations on Full and Shortened LDPC code

SPECTRAL EFFICIENCY OF QAM WITH FEC

- An LDPC Forward Error Correction approach is proposed with partial bit coding using set partitioned coded modulation
- Even and Odd QAM constellations supported for finer SNR Threshold granularity
- Codeword shortening supports variable code rates with a single LDPC code for finer spectral efficiency granularity
- Reduced decoder memory size with 12000 bit LDPC code
- Reduced decoder rate with 4-bit per QAM symbol partial bit coding
- Reduced decoder complexity with a single LDPC code
- Spectral Efficiency granularity in 0.5 bits/symbol increments
- SNR Threshold granularity in ~1.5 dB increments
- Better performance with lower complexity and greater flexibility

THANK YOU