Performance Analysis of EPoC FEC for Passive Coax Plants

Christian Pietsch (Qualcomm) Stefan Brueck (Qualcomm)

Introduction and Scope

- During the Victoria meeting it was agreed to specify two sets of LDPC codes (prodan_3bn_01_0513.pdf):
 - One code set for passive plants
 - One code set for active plants
- During the Geneva meeting codes were presented:
 - For active plants: prodan_3bn_01b_0713.pdf
 - For passive plants: pietsch_3bn_01_0713.pdf
- This presentation provides a more detailed performance analysis for the codes for passive plants. This includes AWGN performance and various burst noise scenarios.
- For reasons of self-containedness, this presentation contains the code description. The codes are the same as described in pietsch_3bn_01_0713.pdf.

Codes Parameters and Deployment Scenarios

CODES	Rate	Length	DEPLOYMENT	Passive plant	Active plant
B	 R _B = 8/9	16200	US, low band	E, F, G, H	B, C, D
С	$R_{\rm C} = 0.848$	5940	DS, low band	E, F, G, H	
D	$R_{\rm D} = 3/4$	1120	US, high band	E, F, G, H	
E	$R_{E} = 41/46$	16560	DS, high band	E, F, G, H	В
F	$R_{F} = 26/30$	10800			
G	$R_{G} = 13/15$	5400			
Н	$R_{H} = 3/4$	960			

Code choice for passive plants:

- Typically, the code with the longest code words (E) will be preferred choice whenever possible, e.g. considering grant size, potential transmission windows, and latency requirements.
- For US transmissions, small grant sizes will entail the use of the shorter codes. Code E may be rarely used in some situations
- For DS transmissions, we will mostly see the use of code E. For TDD, shorter code words are necessary to increase efficiency for short transmission windows.

Code Description

- All LDPC codes for passive plants are quasi-cyclic and binary
- The matrix M to calculate the parity bits has nearly upper diagonal form for all codes
 - Only the first sub-diagonal of the matrix M is non-zero
 - The parity matrices H are constructed so that encoding can be realized with low complexity
- In the following slides the parity check matrices H of the LDPC codes are given
- Description
 - In all tables the top row indexes columns of the parity check matrix
 - The second row of the tables indicates information (1) and parity (0) columns
 - The third row of the tables indicates transmitted columns (1) and punctured columns (0)

Parity Matrices for Codes E and F

Го	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0		000			100	070			010						000	040	000	1.40	05	000		0.55	0.57					00		40		000					107	100	050	000	077	040	110		810	100
																																									257 233					
																																									199					
		113	183		302			221	153	349	5	334	256	269			208	61	240		40			194					123	-				1	147	288		109		122	333	152		275	42	142
Ŀ	-	•	•	244	189	45	352	118	•		59	•	340	99	267	122	•	-	•		•	213	-	159	86	-	352	-	•		163	151	339	225	326		•	147	170			7	198	110	300	35
I																																														

Figure 8: Base code information bits: 41; (max) block length: 46. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30]
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
183	90			160	295			268	240	182	127		187			179	288		167	14	327	96	•	215	359			273	344	261
183	0				276	291			58	308	348	286		4	93			171				207	54	190	352	309	34	223	84	62
	0	61				184	160	212	235				256		39	191	236	303	324		•		292		83	132	189	224	251	142
		61	122	351		344	51				267	122		284	341	94	335			256	194	270		240	127	351	234		202	228
			122	175	104		206	42		91		198	329	266				284	269	73	192		93	1		220	197	44		266

Figure 4: Base code information bits: 26; (max) block length: 30. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

Parity Matrices for Codes G and H

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0			45		92	28		137	111	344	2	338	190	258	328	13
	241			284			186		198	185	334	76	148	236	93	190
				$171 \\ 287$												

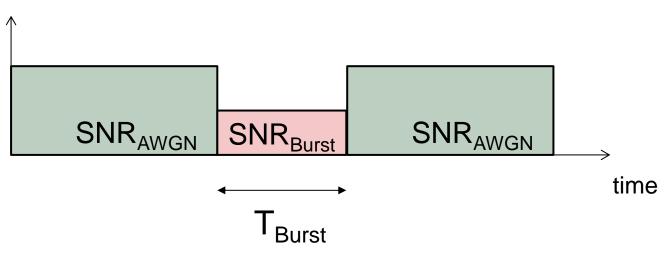
Figure 2: Base code information bits: 13; (max) block length: 15. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 360

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	16			21	9			33	44			15	40	4	56	47
0	1						12	39	42	40	2		54	33	32	12
	1	32			4	46	50			44	7	43	47	23		48
		32	3	34		44	58	8			54	14	4		43	26
			3	27	43	41			38	56	20	20		13	16	10

Figure 1: Base code information bits: 12; (max) block length: 16. Lifting: ROTATION SPACE:NESTED CYCLIC:1: 60

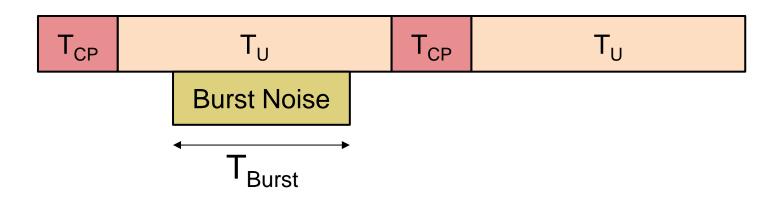
Edge Density, Parity Checks and Lifting Size

Base n	Base k	Rate	Lifting Z	Information Bits	Code word length	Parity checks	Based edges	Edge density
40		0.0040		4.4700	40500	0400	454	0.040
46	41	0.8913	360	14760	16560	2160	154	3.348
30	26	0.8667	360	9360	10800	1800	98	3.267
					- /	1080	()	/
15	13	0.8667	360	4680	5400	(1440)	54 (56)	3.6 (3.73)
16	12	0.75	60	720	960	300	53	3.3125


Performance Analysis of the LDPC Codes

- In the following slides a detailed performance analysis of the proposed LDPC codes is provided
- Simulation results are shown for
 - AWGN
 - Burst noise including required time interleaving depth
 - OFDM symbol durations of 20 μs and 40 μs
- Performance metric of interest is a bit error rate (BER) of 1e-8
 - A BER of 1e-8 corresponds roughly to a frame error rate of 1e-6

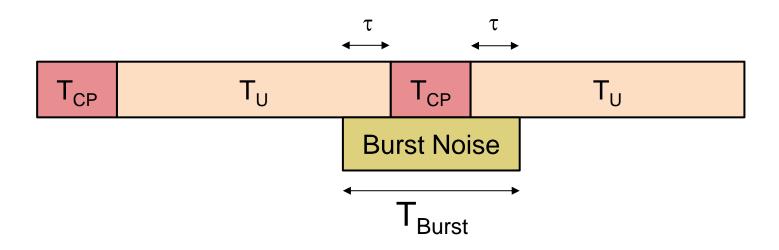
Burst Noise in OFDM


To analyze performance in burst noise, a simple model is chosen

- Burst noise is modeled as white Gaussian noise with a certain SNR_{Burst}
 - Burst noise is assumed to be wideband
- Burst noise is modeled with time duration T_{burst} and burst SNR SNR_{Burst}

- The burst noise duration T_{Burst} is assumed to be shorter than the duration of an OFDM symbol
 - In this case, burst noise can impact one or two OFDM symbols

Burst Noise affecting One OFDM Symbol

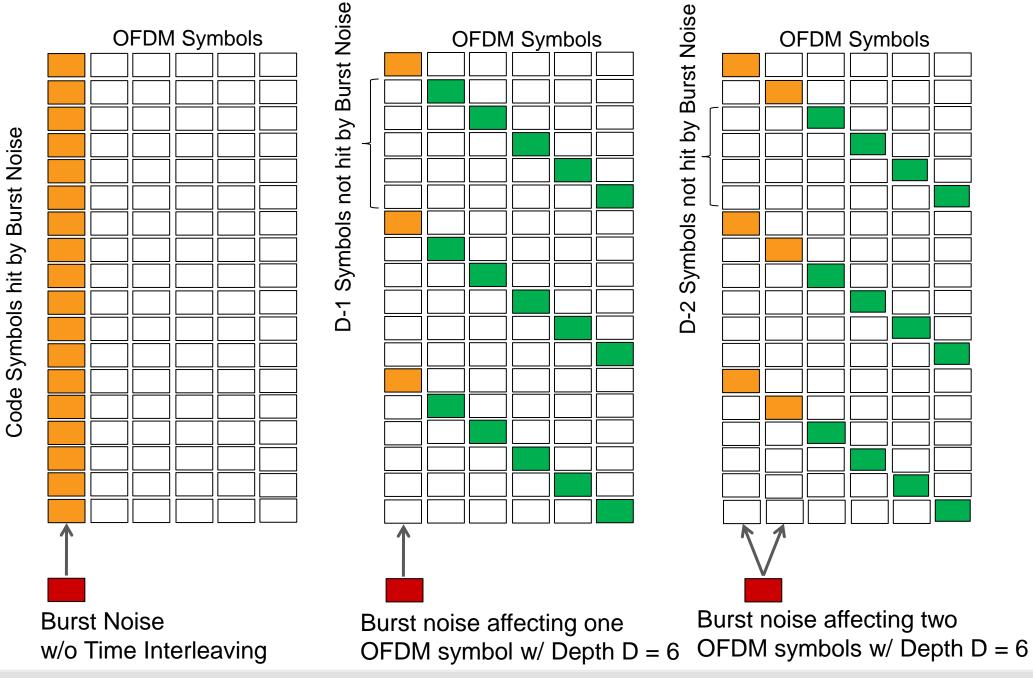


Effective SNR in OFDM symbols hit by burst noise

 $\begin{aligned} & = \text{SNR} = -10 \cdot \log_{10}(10^{(-\text{SNR}_{\text{Burst, effective}}/10) + 10^{(-\text{SNR}_{\text{AWGN, effective}}/10)}) \\ & - \text{SNR}_{\text{Burst, effective}} = \text{SNR}_{\text{Burst}} - 10 \cdot \log_{10}(\text{T}_{\text{Burst}} / \text{T}_{\text{U}}) \\ & - \text{SNR}_{\text{AWGN, effective}} = \text{SNR}_{\text{AWGN}} - 10 \cdot \log_{10}(1 - \text{T}_{\text{Burst}} / \text{T}_{\text{U}}) \end{aligned}$

- Effective SNR in OFDM symbols not hit by burst noise
 - SNR = SNR_{AWGN}

Burst Noise affecting Two OFDM Symbols

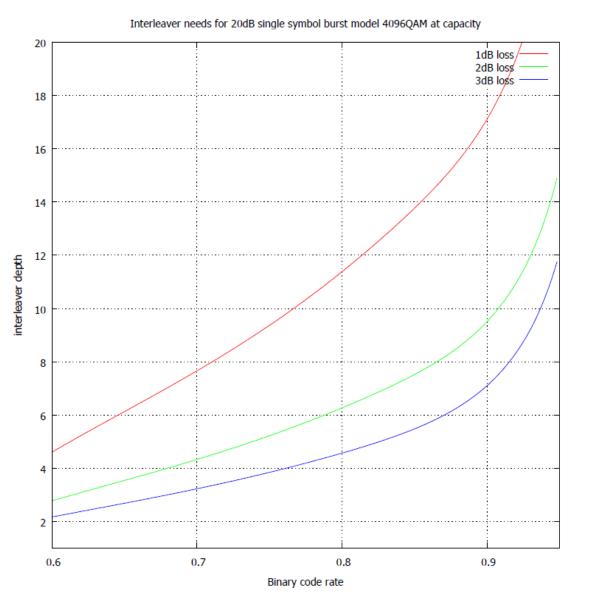

Effective SNR in OFDM symbols hit by burst noise

 $SNR = -10 \cdot \log_{10}(10^{(-SNR_{Burst, effective}/10)} + 10^{(-SNR_{AWGN, effective}/10)})$ - SNR_{Burst, effective} = SNR_{Burst} - 10 \cdot \log_{10}(0.5 \cdot (T_{Burst} - T_{CP}) / T_{U}) - SNR_{AWGN, effective} = SNR_{AWGN} - 10 \cdot \log_{10}(1 - 0.5 \cdot (T_{Burst} - T_{CP}) / T_{U})

Effective SNR in OFDM symbols not hit by burst noise

SNR = SNR_{AWGN}

Frequency Domain View of Time Interleaving Depth



IEEE 802.3bn

Consideration on Time Interleaving Depth D

- The depth D of the time domain interleaving impacts how many QAM symbols of a code word are affected by burst noise
 - For a larger interleaving depth D less symbols of a code word are impacted and performance improves
 - The drawback of a large interleaving depth D is increased PHY latency
 - However, if the depth D is too small, BER performance does not reach the BER target of 1e-8 anymore
- Hence, an important metric is the required interleaving depth D to achieve BER = 1e-8 at a fixed AWGN SNR
 - Interleaving depths are provided in the following
- Comments on required interleaving depth D
 - It can be shown that the required interleaving depth D is related to the inverse of the code rate R, i.e. D ~ 1 / (1 – R)

Code Rate and Interleaving Depth

- In burst noise a higher AWGN SNR is needed for the same capacity
 - This increase in SNR is called loss in the figure
 - This can be seen as required SNR margin for burst noise
- For a given margin, the figure shows the required interleaving depth as a function of code rate
- Codes with higher rate require higher interleaving depth
 - In comparisons for burst noise performance, code rates must be identical

Simulation Assumptions

- Downstream
 - 4096QAM
 - OFDM symbol durations $T_U = 20 \ \mu s$ and $T_U = 40 \ \mu s$
 - Cyclic prefix length $T_{CP} = 2.5 \ \mu s$
 - Burst noise

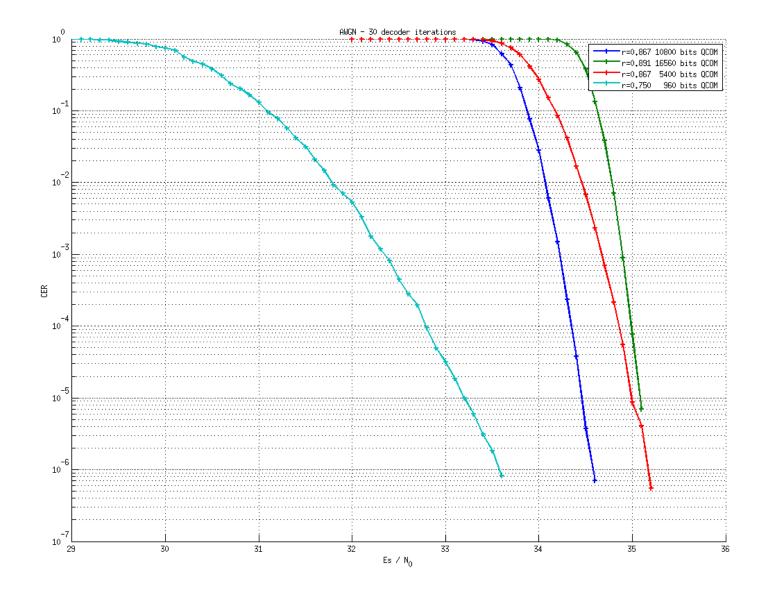
a) $T_{Burst} = 16 \ \mu s$, $SNR_{Burst} = 20 \ dB$ equally affecting two OFDM symbols

- Upstream
 - 1024QAM
 - OFDM symbol durations $T_U = 20 \ \mu s$ and $T_U = 40 \ \mu s$
 - Cyclic prefix length $T_{CP} = 2.5 \ \mu s$
 - Burst noise

a) $T_{Burst} = 1 \ \mu s$, $SNR_{Burst} = 0 \ dB$ affecting one OFDM symbol only

b) $T_{Burst} = 10 \ \mu s$, $SNR_{Burst} = 10 \ dB$ equally affecting two OFDM symbols

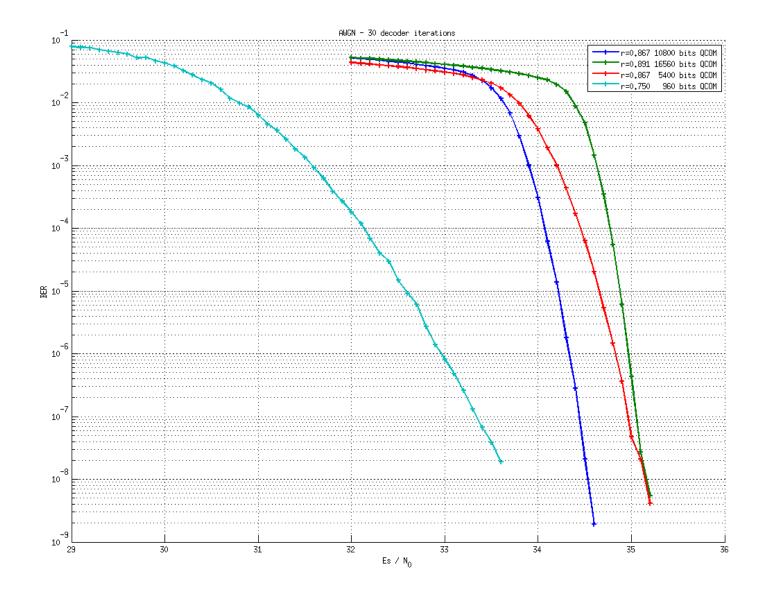
LDPC Decoder Assumptions


- Sum product decoder
- Flooding schedule
 - No layered iterations are applied
- The maximal number of iterations is set to 20 or 30, respectively
 - In the hardware implementation, layered iterations would be applied
 - This allows reducing the number of iterations roughly by 50%
 - Since the implementation and performance of a layered schedule is LDPC code specific, it is not used for code comparison
- Simulation methodology according to prodan_3bn_02_0313.pdf

Required Interleaving Depths for Burst Noise

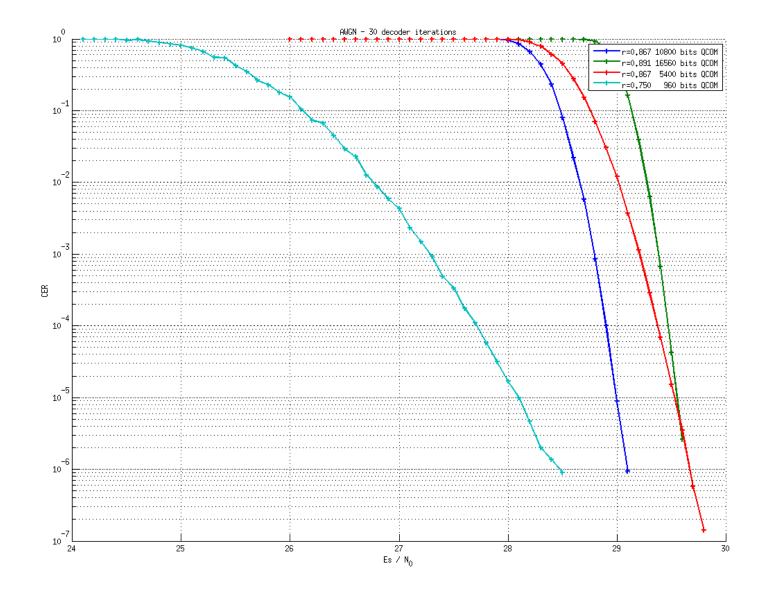
- The table shows the required time interleaving depths to achieve CER = 1e-6 and BER = 1e-8 and OFDM symbol duration 20 μ s
 - The simulation results in the following slides assume these interleaving depths

Burst Model	Long Code Length = 16560	Medium Code I Length = 10800	Medium Code II Length = 5400	Short Code Length = 960
Downstream Model a)	D = 17			
Upstream Model a)		D = 17	D = 17	D = 17
Upstream Model b)		D = 17	D = 17	D = 17


AWGN Performance for 4096QAM – CER

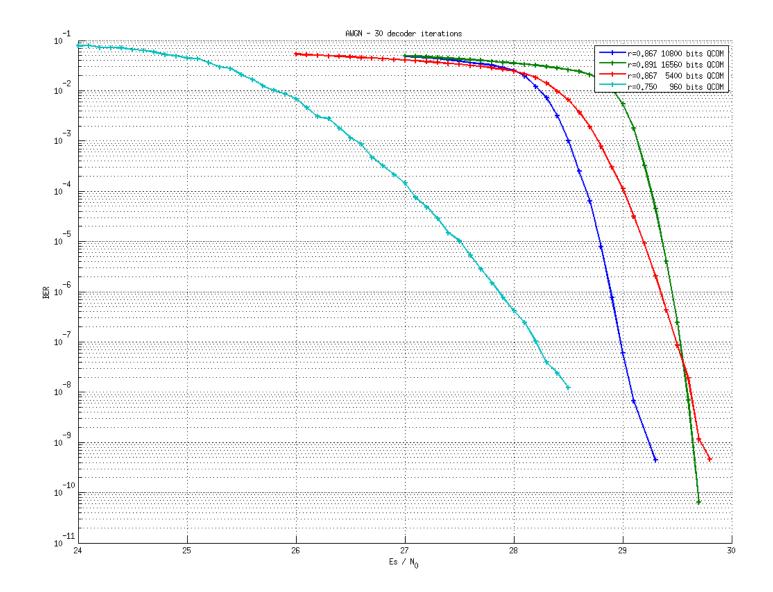
IEEE 802.3bn

York


AWGN Performance for 4096QAM – BER

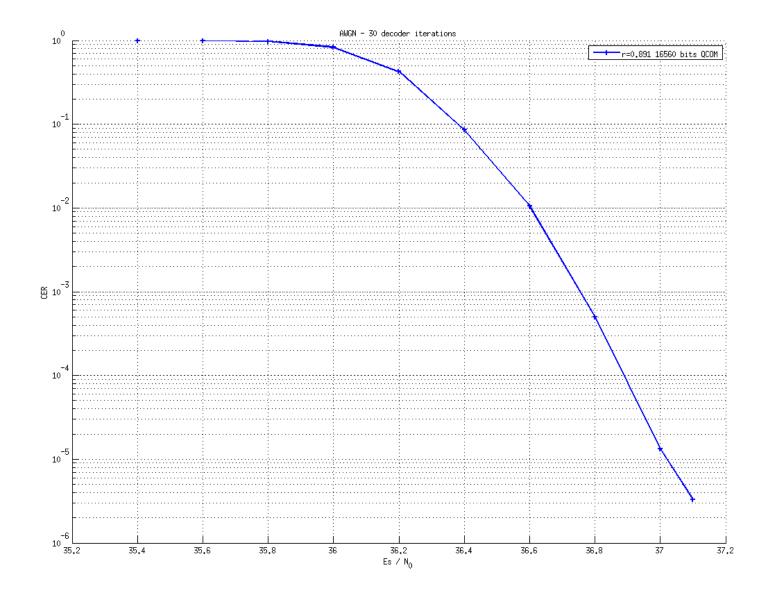
IEEE 802.3bn

York

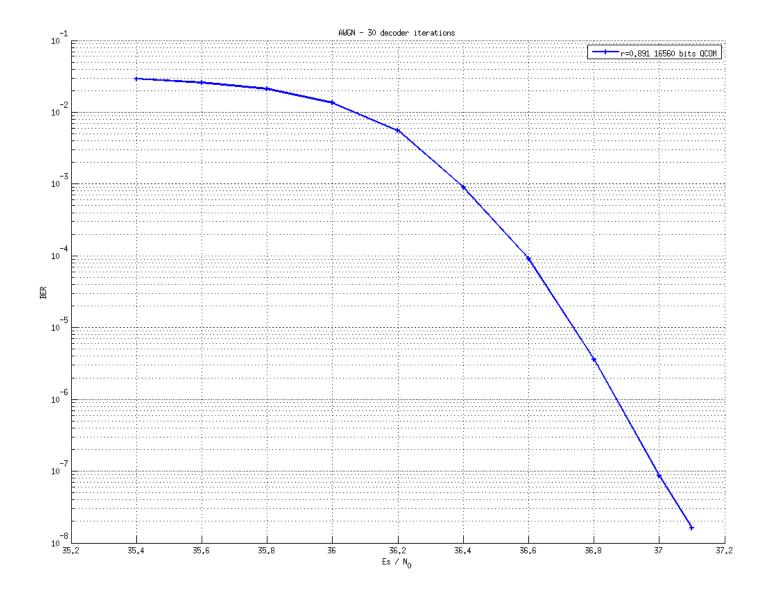

AWGN Performance for 1024QAM – CER

IEEE 802.3bn

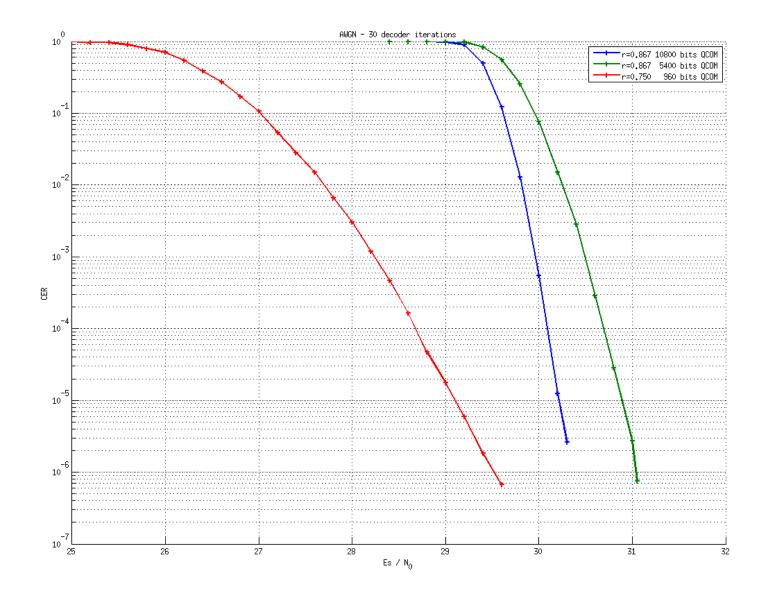
York


AWGN Performance for 1024QAM – BER

IEEE 802.3bn

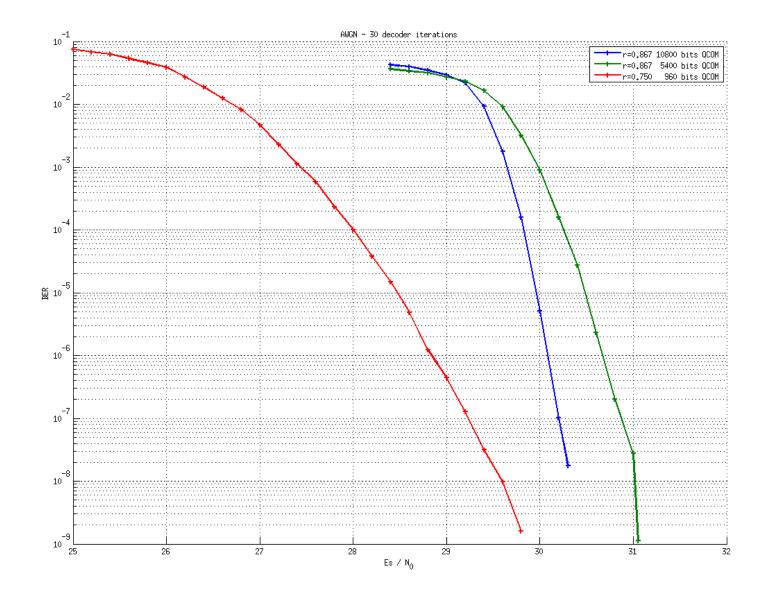

York

DS Burst Model a) – CER, 20 µs Symbol Duration



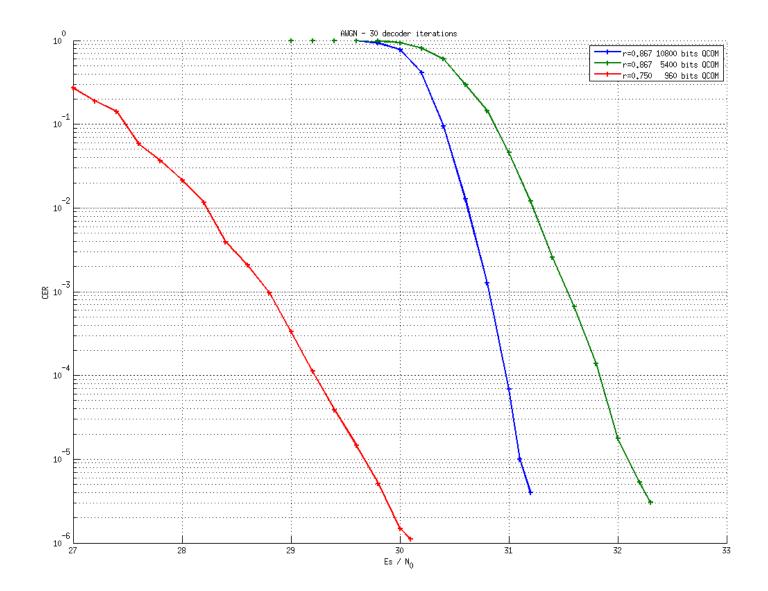
IEEE 802.3bn

DS Burst Model a) – BER, 20 μ s Symbol Duration


US Burst Model a) – CER, 20 µs Symbol Duration

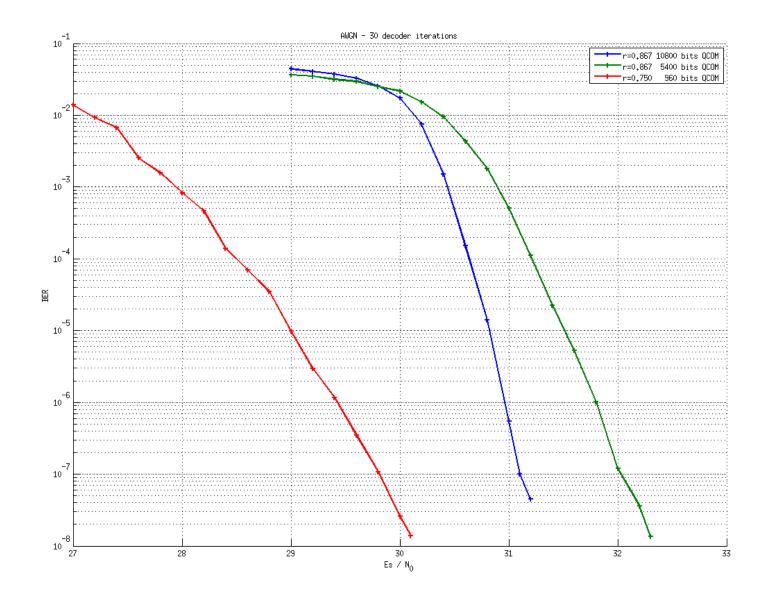
IEEE 802.3bn

York


US Burst Model a) – BER, 20 μ s Symbol Duration

IEEE 802.3bn

York


US Burst Model b) – CER, 20 µs Symbol Duration

IEEE 802.3bn

York

US Burst Model b) – BER, 20 μ s Symbol Duration

IEEE 802.3bn

York

Discussion and Conclusions

- Performance results were presented for AWGN and burst noise scenarios
- Agreed performance metrics are shown to be met

thank you