Update on

EPoC Upstream Pilot Proposal

Resource Block Rules

- RBs are fixed in frequency
- Comprised of a single subcarrier and 8,12,16 symbols
- All RBs have the same number of symbols. Changing the number of symbols requires restart
- RBs are configured with a RB type and bit loading
- RB type determines the pilot pattern
- RBs may have different pilot patterns and bit loading
- A single grant (TX burst) may comprised of a series of RBs of different types and different pilot patterns
- At least eight RBs are required for a single grant
- Exclusions
- A minimum of eight contiguous used subcarriers are required between exclusion bands and between exclusions and the first or the last subcarriers of the OFDMA frame boundaries is eight subcarriers
- Word more clearly. Minimum occupied? What are frame boundaries? Between the exclusion band and the frame boundary? AK> See corrections above and below - do they answer the questions?
- RBs must not be allocated to subcarriers between exclusions that are less than 8 subcarriers to the subcarriers between exclusions If the gap in frequency between these exclusion bands is less than 8 subcarriers wide than eight RBs are not allocated
- RBs must not be allocated to subcarriers between an exclusion band and the first subcarrier of the OFDMA spectrum if there are less than 8 subcarriers between them
- RBs must not be allocated to subcarriers between an exclusion band and the last subcarrier of the OFDMA spectrum if there are less than 8 subcarriers between them

RBs and Pilot Patterns

- Three types of RBs
- Type 0 - RB does not include pilots
- Type 1 - RB includes two pilots
- Type 2-RB includes two pilots and two low-density data subcarriers ("LD pilots")
- LD density is four bits lower than data density or QPSK, the largest of the two.
How low density is LD? 1, 2 bits less? State clearly.
- Figure below depicts RB type 1 and Type 2 with 8,12 and 16 symbols

RB Type 1
Two pilots on the first and third symbols

Two pilots on the first and third symbols and two LD pilots on last and second to last symbols

Pilots Rules

- Configurable pilot locations
- Pilot patterns are configurable during network initialization and constant over the frequency grid
- Configurable in what way? (e.g. every subcarrier can have a different type?)
- What are the bounds on configurability?

AK> Could be a good idea to have the bounds, but it will complicate the specifications. We can decide once this concept is acceptable. Note that pilot structure is upto the CLT

- Pilots on Boundaries
- Type-2 RBs are always used on OFDMA frame boundaries and exclusions edge subcarriers
- Is not "Frame Boundary" treated the same as an exclusion edge? AK> Didn't understand the question
- Start of a transmission burst
- First RB in a transmission burst (grant) is always of type \#2
- How do these relate to burst marker placement? AK> There is a proposal for BM placement including pilots
- End of a transmission burst
- Last RB in a transmission burst (grant) is always of type \#2

Pilot Rules - Examples (1)

- Pilot grid example:
- Pilots repeat every four subcarriers
- LD pilots repeat every eight subcarriers
- This pilot pattern is configured during initialization and is fixed in frequency
- Can you mix RB lengths from $R B$ to next $R B$? Make clear. Duane: right now, one value for time interleaver (RB) Ed: changing interleaver would require restart. Mark: side need to have an enumerated list for what requires or does not require a restart.
AK> I agree with the discussion. All RBs have the same length. Changing length requires restart (added to the first slide)

Pilot Rules - Examples (2)

- A transmission burst starts and ends with a Type 2 RB

Transmission

- These pilots are added over th $\underset{B}{ }$ fixed pilot pattern
- When a start or end "lands" on a Type 1, does it then become a Type 2? How do markers align? and with LD use?

AK> There is a proposal on how BMs are mapped. See three added slides from Leo's presentation in Norfolk

- Why do start/stop pilots necessary? Make part of marker definition (floating) and not part of pilot definition (fixed)?
AK> You may consider these pilots as part of the BMs. See contribution on the BMs structure and how it is combined with the pilots

Configuring the RB Profile

- Profile Information (PI) - 8 bits per RB
- 2 bits for RB type
- 4 bits for bit loading
- 2 reserved
- RB MAP is the mapping of the PIs to subcarriers over the full bandwidth
- Upto ~4K Pls can be define
- The CLT sends a PI description message with the description of the RB MAP over the DS PLC
- To shorten the PI description message repetitions of strings of PIs can be used
- Each string of PIs is defined, with the number of contiguous repetitions of the string - Use either explicit or algorithmic, don't do both
- Upto TBD entries can be allowed in the message
- What this mean in terms of MDIO registers?
- Perhaps select method that reduces amount of configuration?
- Would like to understand tradeoffs, so include justification

Examples BM 4x6 in 8 symbols RB

Stop
BM S0
Note: Power
is
constant
versus time

Symbol

P	D	P	D	D	CP	D	CP
D	0	D	1	0	-1	1	0
D	1	D	0	1	0	0	1
D	0	D	1	-1	0	0	-1
D	1	D	0	0	1	-1	0
D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D
\square	■	\square					
D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D
D	1	D	0	-1	0	0	1
D	0	D	1	0	1	1	0
D	1	D	0	0	-1	-1	0
D	0	D	1	1	0	0	-1
P	D	P	D	D	CP	D	CP

Examples of $\mathrm{BM} 4 \times 6$ in 12 symbols RB

Legend
+/-1: BM "B"
0 : BM "N"
D: Data
P: Pilot
CP : C. Pilot

Note: Power is
constant versus time

Examples of $\mathrm{BM} 4 \times 6$ in 16 symbols RB

Note: Power is
constant versus time

