EPoC Burst Marker Proposal for EPoC 802.3bn

Leo Montreuil, Broadcom
Avi Kliger, Broadcom
Rich Prodan, Broadcom
March 16-21, 2014 Beijing, China

Supporters

2-D Burst Marker Design (1) 2-D "B" and "N" sequence

- Burst Marker size is $\mathrm{N}_{\mathrm{f}} \times \mathrm{N}_{\mathrm{s}}$. Size determine performance for false and misdetection
- 1:1 ratio of BPSK " B " to Nulls " N " is best performance
- N_{f} (frequency direction size) should be even, allowing boosting the power of " B " subcarriers by 2 without increasing total output power
- N_{s} (time direction size) can be a odd or even

2-D Burst Marker Design (2) 2-D "B" and "N" sequence

- Best 2-D auto-correlation sequence is selected (by exhaustive search)
- BM can be interspersed with the data and pilots to improve robustness
- Stop marker is the complement of the Start sequence:
- " B " \rightarrow " N " and " N " \rightarrow " B "

2-D Burst Marker Design (3) 1-D "B" sequence

- "B" sequence is 1-D BPSK of length $\left(N_{f} \times N_{s}\right) / 2$
- No position ambiguity, set by the 2-D sequence.
- Sequence boosted by 2 (3 dB) for robustness.
- Best 1-D auto-correlation sequence selected (by exhaustive search). Some circular shifts of a sequence are mutually orthogonal.
- Profile encoded on BPSK sequence. Each profile has its own circular shift of the base sequence. Examples:
$-\mathrm{BM} 4 \times 4$ BPSK profile 0 (no shift) : $\mathrm{SO}=\left[\begin{array}{llllllll}-1 & 1 & 1 & 1 & 1 & -1 & 1 & -1\end{array}\right]$;
- BM 4×4 BPSK profile 1 (shift +1) : S1 = $\left.\begin{array}{llllllll}-1 & -1 & 1 & 1 & 1 & 1 & -1 & 1\end{array}\right] ;$
- BM 4x4 BPSK profile 4 (shift -3) : S4 = [11 1-1 1-1-1 1 1];

Proposed 2-D Burst Marker, Profile 0

4×6 Start BM					
$\left.\begin{array}{\|c\|c\|c\|c\|c\|}\hline 0 & -1 & 0 & 1 & 1\end{array}\right) 0$					
1	0	1	0	0	1
0	-1	-1	0	0	1
1	0	0	-1	1	0

4×8 Start BM							
0	-1	0	1	1	1	0	0
1	0	1	0	0	0	-1	1
-1	0	1	0	1	0	0	-1
0	-1	0	-1	0	1	-1	0

- 4×4 BM " B " sequence: $S 0=\left[\begin{array}{lllll}-1 & 1 & 11 & 1-1 & 1-1\end{array}\right]$
- 7 mutually orthogonal sequences by circular shift of $[0,1,2,3,-3,-2,-1]$
- $4 \times 6 \mathrm{BM}$ " B " sequence : $\mathrm{SO}=\left[\begin{array}{llllllll}-1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 \\ -1 & 1\end{array}\right]$
- 11 mutually orthogonal sequences by circular shift of $[0,1,2,3,4,5,-5,-4,-3,-2,-1]$

- 13 mutually orthogonal sequences by circular shift of $[0,1, \ldots, 6,-6,-5, \ldots,-1]$
- Stop marker is complementary to Start marker, "B" \rightarrow " N ", " N " \rightarrow " B "
- Profile sequence is on Start and Stop marker. First element is top left corner, then left to right and top to bottom.
- Start BM is preceded by one subcarrier carrying Pilots and Data. Stop BM is followed by one subcarrier carrying Pilots and Data (see examples).

Examples of BM 4×4 in 8 symbols RB

Symbol

P	D	P	D	D	CP	D	CP
D	0	D	-1	D	0	D	1
D	1	D	0	D	1	D	0
D	0	D	1	D	-1	D	0
D	1	D	0	D	0	D	-1
D	D	D	D	D	D	D	D
D	D	D	D	D	D	D	D
\mathbf{D}							

Symbol

Examples of BM 4×6 in 8 symbols RB

Symbol

Symbol

\rightarrow								
P	D	P	D	D	CP	D	CP	
D	0	D	1	0	-1	1	0	
D	1	D	0	1	0	0	1	
D	0	D	1	-1	0	0	-1	Start BM S1
D	1	D	0	0	1	-1	0	
D	D	D	D	D	D	D	D	
D	D	D	D	D	D	D	D	Legend
$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$	\bullet		\bullet	\bullet			\bullet	$\begin{aligned} & +/-1: B M \text { " } B^{\prime \prime} \\ & 0: B M \text { "N" } \\ & D: \text { Data } \end{aligned}$
D	D	D	D	D	D	D	D	P : Pilot
D	D	D	D	D	D	D	D	Stop BM S1
D	1	D	0	-1	0	0	1	
D	0	D	1	0	1	1	0	
D	1	D	0	0	-1	-1	0	
D	0	D	1	1	0	0	-1	
P	D	P	D	D	CP	D	CP	

Examples of BM 4×6 in 12 symbols RB

Legend +/-1 : BM "B" 0 : BM "N"
D: Data
P: Pilot
CP : C. Pilot

Note: Power is constant versus time

Examples of BM 4×6 in 16 symbols RB

Legend
+/-1 : BM "B" 0 : BM "N"
D: Data
P : Pilot
CP : C. Pilot

Note: Power is constant versus time

Examples of BM 4×8 in 8 symbols RB

Symbol

Symbol

P	D	P	D	D	CP	D	CP	Start BM S1
0	-1	0	-1	1	1	0	0	
1	0	1	0	0	0	1	-1	
1	0	-1	0	1	0	0	1	
0	-1	0	-1	0	-1	1	0	
D	D	D	D	D	D	D	D	
D	D	D	D	D	D	D	D	Legend
-	\bullet	\bullet	$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$		\bullet		$\begin{aligned} & +/-1: B M " B " \\ & 0: B M \text { "N" } \end{aligned}$
D	D	D	D	D	D	D	D	P : Pilot
D	D	D	D	D	D	D	D	$\begin{aligned} & \text { Stop } \\ & \text { BM S1 } \end{aligned}$
-1	0	-1	0	0	0	1	1	
0	1	0	1	1	1	0	0	
0	1	0	-1	0	1	1	0	
-1	0	-1	0	-1	0	0	1	
P	D	P	D	D	CP	D	CP	

Burst Marker False and Misdetection with Data

Burst Marker False and Misdetection with Data

BM Detector Simulation with Additive

 White Gaussian Noise only (no BM or Data)- $B M 4 x 4, K_{b n}=8, K_{x c}=4.5$
- False_BN = 7.5e-5, False_XC = 9.3e-4, False_XC\&BN = 6.5e-8
- $B M 4 x 6, K_{b n}=6, K_{x c}=6$
- False_BN = 2.2e-5, False_XC = 7.9e-5, False_XC\&BN =1.7e-9
- $\mathrm{BM} 4 x 8, \mathrm{~K}_{\mathrm{bn}}=6, \mathrm{~K}_{\mathrm{xc}}=8$
- False_BN = 1.1e-6, False_XC = 2.5e-6, False_XC\&BN = 2.8e-12
- $B M 4 x 8, K_{b n}=8, K_{x c}=8$
- False_BN = 4.2e-8, False_XC = 2.5e-6, False_XC\&BN = 1.1e-13

BM Detector Threshold in Presence of

CW Interference (1)

- CW interference (in noise free channel) prevents detection of BM. At threshold, Misdetection error rate 50\%!
- Definitions:
- N_{i} is number of " N " RE corrupted by CW
- P_{cw} is power of CW (note: Data power is 1 and " B " is 2)
- Kbn is scaling of sum of " N " RE power
- BM 4×4 threshold for: $\mathrm{N}_{\mathrm{i}}{ }^{*} \mathrm{P}_{\mathrm{cw}}{ }^{*} \mathrm{~K}_{\mathrm{bn}}>\mathrm{N}_{\mathrm{B}}{ }^{*} 2$ for $\mathrm{N}_{\mathrm{B}}=8$ and $\mathrm{K}_{\mathrm{bn}}=8$, then $\mathrm{P}_{\mathrm{cw}}>2 / \mathrm{N}_{\mathrm{i}}$
- CW on one subcarrier: $\quad N_{i}=2 \rightarrow P_{c w}$ at 0 dB
- CW on one symbol :
$\mathrm{N}_{\mathrm{i}}=2 \rightarrow \mathrm{P}_{\mathrm{cw}}$ at 0 dB

BM Detector Threshold in Presence of CW Interference (2)

- BM 4×6 threshold for: $\mathrm{N}_{\mathrm{i}}{ }^{*} \mathrm{P}_{\mathrm{cw}}{ }^{*} \mathrm{~K}_{\mathrm{bn}}>\mathrm{N}_{\mathrm{B}}{ }^{*} 2$ for $\mathrm{N}_{\mathrm{B}}=12$ and $\mathrm{K}_{\mathrm{bn}}=6$, then $\mathrm{P}_{\mathrm{cw}}>4 / \mathrm{N}_{\mathrm{i}}$
-CW on one subc.: $\quad \mathrm{N}_{\mathrm{i}}=3 \rightarrow \mathrm{P}_{\mathrm{cw}}$ at +1.25 dB
-CW on one symbol: $\mathrm{N}_{\mathrm{i}}=2 \rightarrow \mathrm{P}_{\mathrm{cw}}$ at +3 dB
- BM 4×8 threshold for: $\mathrm{N}_{\mathrm{i}}{ }^{*} \mathrm{P}_{\mathrm{cw}} * \mathrm{~K}_{\mathrm{bn}}>\mathrm{N}_{\mathrm{B}}{ }^{*} 2$ for $N_{B}=16$ and $K_{b n}=6$, then $P_{c w}>(32 / 6) / N_{i}$
- CW on one subcarrier:
$N_{i}=4 \rightarrow P_{c w}$ at +1.25 dB
- CW on one symbol :

$$
N_{i}=2 \rightarrow P_{c w} \text { at }+4.26 \mathrm{~dB}
$$

Simulink Model of BM 4x6 Detector and Correlator

Remark

- With 16-QAM or higher data constellations, false detection error floor is:
- BM 4x4: False detection floor $\approx 1 \mathrm{e}-9$
- BM 4x6: False detection floor $\approx 1 \mathrm{e}-11$
- BM 4x8: False detection floor $\approx 3 \mathrm{e}-16$
- "B" \& "N" sequence detection not affected for BM on noncontiguous spectrum or spanning across 2 frames for partially pre-equalized US.
- "B" BPSK sequence correlation may require pre-equalized upstream.
- BM 4×4 requires aggressive threshold for low error floor
- not a lot of margin!

Recommendation

- Use a single Burst Marker: BM 4x6 (slide 6)
- Simplicity
- Robust enough for low packet error rate
- Minimal overhead
- Up to 11 profiles for signaling
- Low implementation complexity
- Distinct Start and Stop Markers
- Unity power

PROPOSED MOTION \#

- Adopt the $4 x 6$ Burst Marker as described in Slide 6 as baseline for 802.3 EPoC (mapping in RB examples on slide 8-10)
- Stop marker is the complement of " B ' \& " N " Start Marker pattern
- Non-nulls "B" boosted by a factor of 2 in power (3.01 dB)
- Profile 0 encoded on " B " using $S 0$ sequence
- Orthogonal circular shifts of SO sequence used for other profiles
- Moved by:
- Seconded by:

