Echo Cancelling Power For 1Gbps 1TP RTPGE with 15m Category cabling

Will Bliss, Broadcom

IEEE P802.3 RTPGE Study Group

Phoenix, AZ

January 22, 2013

Motivation and Overview

- The use of 1TP solutions requires full duplex 'echo cancelling'
- Echo cancelling is known to be 'hard', so the question is raised, "How much implementation power is required for echo cancelling?
- A simple analytic model of the power to cancel echo is introduced
- Results for different cable categories and variable analog bandwidth are given
- Power results are given with respect to the latest design 10GBASE-T PHYs (which everyone has a good idea of total power)
 - The actual 'echo cancelling' power must be less than this total PHY power

Channel Assumptions

- Effects due to board, magnetics and associated connectors not considered
 - We will operate at relatively low BW, so these can easily be quite minor
- For a simple first look, we use IL and RL specifications of Class Ea (Category 6a) cable specifications
 - 2-connector (+2 end cords) channel model was used (may be pessimistic)

SNR Margin to Capacity Definition

- See development details in grimwood01_0113NGBT.pdf in www.ieee802.org/3/NGBASET
- Let *BW* be the design analog bandwidth in Hz.
- Let C' be the desired capacity for one twisted pair (=1Gb/s)
- From Shannon-Hartley the theoretical min SNR in dB is given by

$$SNR_{C} = 10 \log_{10}(2^{(C'/BW)} - 1)$$

 For each cable parameter, define the SNR margin to capacity, SNR_margin_{cable_param}(BW), as the required constant change in loss across all frequencies in order to reach SNR_c.

SNR Margin to Capacity Equation

• From Shannon-Hartley,

$$C = \int_0^{BW} \log_2((S(f)/N(f)) + 1)df$$

- For reasonable bandwidths, S(f)/N(f) >> 1 at capacity.
- Express C' as a function of $SNR_margin_{cable_param}(BW)$: $C' = \int_{0}^{BW} log_{2} \left((S(f)/N(f)) * 10^{(SNR_margin_{cable_param}(BW)/10)} \right) df$
- Solve for $SNR_margin_{cable_param}(BW)$ to get the following: $SNR_margin_{cable_param}(BW) = \frac{(C - C') * 10log_{10}(2)}{BW}$

Margin Assumptions for RTPGE

- Allow significantly sub-optimal 'coding' that operates 8dB from the Shannon limit
 - 10GBASE-T operates 4.7dB from capacity
 - Current aggressive PHY proposals target <= 4dB
 - Target of 8dB can be met with a relatively modest code with ~6dB coding gain
- Allow another 6dB for Implementation Margin (against the unknown)
 - More than has been allowed for 10GBASE-T
 - More than proposed for some Ethernet PHYs under development
- When calculating 'allowed impairment' (for incompletely cancelled echo here) we'll allow the 6dB implementation margin to be degraded to 5dB

Return Loss Overview

- Analyze combined effect of return loss and insertion loss.
- Determine the margin to capacity, *SNR_margin_{RL}*, based on the ratio of the far-end signal to the local echo.
- Provide a simple model for the PHY power to cancel echo.
- Estimate gains in power efficiency that can be realized by improving return loss.

Return Loss Specifications

IEEE 802.3bp RTPGE Task Force Jan 2013

Insertion Loss Specifications 15m

IEEE 802.3bp RTPGE Task Force Jan 2013

Return Loss Margin to Capacity

- Required Echo Cancellation = code_margin + impl_margin_{RL} – SNR_margin_{RL}.
- 55 dB for 10GBASE-T
- For >= 250MHz analog BW, the echo cancellation required for RTPGE is reduced by over 39-4 =35 dB compared to 10GBASE-T
- And only 1TP to cancel vs. 4TP

Echo Canceling Relative Power Model

• Define a new power model that reflects the relative power consumption due to echo cancellation:

 $P_{RL} \propto BW * 2^{\left(\frac{code_margin+impl_marginRL-SNR_margin_{RL}(BW)}{20*log10(2)}\right)}$

- The term (code_margin + impl_margin_{RL} SNR_margin_{RL}(BW)) reflects the dynamic range of cancellation required
- The dynamic range required is closely related to the required ENOB for ADC and DAC and noise floor
- The above equation very effectively captures the power of well designed analog circuits achieving this BW and the effective 'ENOB'
 - Add reference
- The above equation has been argued as a good first order prediction for the total PHY power
- We don't explicitly consider the power breakdown for the electronic hybrid function

1TP RTPGE Echo Canceling Relative Power vs. Bandwidth

- The power plotted is relative to the echo cancelling power calculated for 10GBASE-T
- The minimum occurs for analog BandWidths between 200 and 250MHz
- The worst cable still achieves power < 3.5 thousandths of 10GBASE
- IF we say all the 10GBASE-T PHY power is spent on echo cancelling, then using published numbers of 3W PHY power, this puts RTPGE echo cancelling power = 10mW

Conclusions

- The overall complexity of sending 1Gbps on 1TP over 15m of CAT6a (class Ea) like cabling is trivial compared to 10GBASE-T
 - The 'communications complexity' is reduced by over 99%!
 - The industry may wish to consider using cables with less copper, as the low frequencies and short reach makes the Insertion Loss rather trivial
 - As an aside (not proven here), the industry may also wish to consider using more plastic (spacing) to control proximity to other wiring and thus control 'Alien' (not studied in this presentation)
- The added complexity of 'Full Duplex' (only 1TP for bi-directional traffic) is very low under these conditions, estimated less than 10mW
 - Market users need to decide whether ~10mW power is worth eliminating half the cables and connections

Thank you