Modulation Schemes Link Budget Analysis under BCI Interference for RTPGE

January 2014 IEEE Reduced Twisted Pair Gigabit Ethernet

Benson Huang, Albert Kuo

Realtek Semiconductor Corp.

Outline

□ SNR Calculation and Channel Model

- BCI Analysis Method
 - Simulation Example
- System Design Considerations
 - Filter Cut-off Frequency Constraint
- □ Link Budget Discussion

□ Summary

SNR Calculation and Channel Model

□ SNR calculation is referred from "huang_01_0512.pdf"

- Transmission PSD = Latest proposed TX PSD MASK (max transmitting power). [PSD Mask from "EMCnoise_ad_hoc_f2f_3bp_01_0716"]
- 15 meter Cable model (IL, AFEXT, ANEXT) from "ch_ad_hoc_3bp_01_1113.pdf"
- ≻ –140dBm/Hz AWGN
- RX AFE second order Butterworth filter
- Calculating Decision-point SNR with infinite FFE and finite length FBE(50taps)
 - Frequency domain analysis model
- Target SNR = Uncoded SNR (at BER = 10⁻¹⁰) Coding gain
- > Define SNR_margin = Decision-point SNR Target SNR
- Perfect ECHO cancellation
- Mode conversion [H_MC(f)] is from "EMCnoise_ad_hoc_3bp_01_1113.pdf" (15 meter cable)
- □ Assume 10% overhead for channel coding.

BCI Analysis Method

Analysis method is modified from "bliss 03bp_01_1113.pdf"

- □ The PSD of b(k) = TX PSD MASK (max transmitting power)
- Narrow-band sine wave interference (BCI-test) is attenuated by RX filter [H_RX(f)] and boosted by FFE [H_ffe(f)]. Thus, BCI-test limitation will vary among different test frequency.
 - > Solve for the min amplitude sine wave at w(k) to make a decision error.
 - This amplitude divides by the frequency response of H_RX(f), H_ffe(f), and mode conversion ratio [H_MC(f)].
 - In the end, we can calculate the limitation of BCI-test refer to the *I(k)* among different frequency.

IEEE 802.3bp RTPGE Task Force– 2014 Interim Meeting

4

Simulation Example

- Simulation shows that BCI-test limitation will vary among different test frequency.
 - > Assume the coefficients of FFE and FBE are fixed under BCI-test.

Worst BCI-test limitation occurs around Nyquist frequency for all modulation schemes.

System Design Considerations {0,1,....M-1} n(k) = AWGN + AFEXT + ANEXTw(k)**y(k**) a(k)**b(k**) a(k)H IL(f) H ffe(f) PAM-M H TX(f) Slicer H RX(f H MC(f) I(k) = BCI interference H fbe(f)-1

❑ Some considerations of receiver design.

6

- > Received signal y(t) is equalized by RX AFE filter, FFE, and FBE.
- > Received noises n(k) and I(k) are equalized by RX AFE filter, and FFE.
- The weight of equalization among RX AFE filter, FFE, and FBE will strongly affect the limitation of BCI-test, especially in high frequency test tone.
 - Better performance for BCI-test: RX AFE filter and FFE are LPF, and FBE is HPF.
 - Worse performance for BCI-test: *RX AFE filter* and *FFE* are HPF, and *FBE* is LPF.
- General design rules of equalization constraint in our simulation.
 - > FFE and FBE are solved from Decision-point SNR in best sampling phase.
 - The cut-off frequency of RX AFE second order Butterworth filter should slightly degrade the SNR and highly improve the BCI-test limitation.

Filter Cut-off Frequency Constraint

□ Choose the proper cut-of frequency of *RX AFE filter*.

PAM	2	3	4	5	6
Cut-off freq (MHz)	80	80	80	80	80

Link Budget Discussion (15 meter)

Link budget calculation

- ➤ Assume LDPC coding gain (~9.75dB).
 - Calculate Target SNR_{w/ coding gain}
- Assume flat 200mA BCI noise level
 - Calculate SNR_{under BCI-test}
- Decision error SNR is the signal to sine wave power ratio, that min amplitude sine wave can make a decision error (slicer error).
- PAM-3 have the best BCI performance with Decision error margin. (7dB)

8

- The simulation shows the RTPGE A M of PAM-M M of PAM-M passing the BCI-test with BER =10⁻¹⁰ is theoretical feasible.
 - The coding gain comes from Gaussian noise analysis. One concern is that whether FEC can still keep the same coding gain under BCI-test (color noise)?

Link Budget Discussion (2 meter)

□ 2 meter cable for BCI-test condition.

- 2 meter cable model from "hermann_3bp_01_0913.pdf"
 - 23 AWG with 4 connectors.
 - Temperature = 125°

□ Brief summary :

- PAM-2 have the best BCI performance with Decision error margin (12.9dB).
- All modulation schemes have at least 8.7dB Decision error margin.
- The simulation shows that all modulation schemes can pass the BCI-test of 2 meter cable.

□ The spec of coding gain can be released under 2 meter cable condition.

Summary

- □ Worst BCI-test limitation occurs around the Nyquist frequency.
- Receiver design is highly correlated to the BCI-test limitation, such as RX filter and equalizer design.
- The simulation shows the RTPGE passing the BCI-test with BER =10⁻¹⁰ is theoretical feasible.
 - Need to further verify the coding gain under BCI-test.
- □ Considering BCI-test of *Decision error margin*
 - > PAM-3 would be the better candidate for 15 meter cable.
 - > All modulation schemes would be fine for 2 meter cable.
- Future work
 - Figure out TX shaping filter, transmission power, and implementation lose.
 - Solution should be trade-off among <u>SNR margin</u>, <u>equalization constraints</u>, and <u>complexity</u> which will imply the best modulation and channel coding.
 - Lower baud rate means lower complexity and power, but lower margin.

This presentation is not a baseline proposal. However, the performance of this solution can be used as a baseline for future evaluation.

Thank you

Any questions?

Backup

Link Budget Discussion (15 meter)

Details of link budget Calculation (page 8)

PAM	Decision error margin (under BCI-test)	SNR Gap	SNR margin (w/o BCI-test)
2	6.6dB	3.2dB	28.8dB
3	7.0dB	3.7dB	29.7dB
4	6.1dB	2.9dB	29.3dB
5	5.2dB	2.0dB	28.6dB
6	4.2dB	1.0dB	28.0dB

•SNR Gap = $SNR_{under BCI-test} - Target SNR_{w/coding gain}$

•SNR_margin = Decision-point SNR - Target SNR_{w/ coding gain}

•Decision error margin = $SNR_{under BCI-test}$ - Decision error SNR

Link Budget Discussion (2 meter)

Details of link budget Calculation (page 9)

PAM	Decision error margin (under BCI-test)	SNR Gap	SNR margin (w/o BCI-test)
2	12.9dB	9.5dB	31.1dB
3	12.2dB	8.9dB	30.9dB
4	11.0dB	7.7dB	30.2dB
5	9.8dB	6.6dB	28.6dB
6	8.7dB	5.4dB	28.0dB

•SNR Gap = $SNR_{under BCI-test} - Target SNR_{w/coding gain}$

•SNR_margin = Decision-point SNR - Target SNR_{w/ coding gain}

•Decision error margin = $SNR_{under BCI-test}$ - Decision error SNR

TX PSD MASK

Mode conversion H_MC(f)

 The mode conversion limit line is proposed for a <u>15m UTP link segment</u> with 4-inline connectors

