Comparison of PAM-N for RTPGE

Xiaofeng Wang, Qualcomm Inc wangxiao@qti.qualcomm.com

Supporters

- Mehmet Tazeby, Broadcomm
- Sujan Pandey, NXP
- Benson Huang, Realtek

Agenda

- Assumptions
- Infinite-Length DFE Results
- Tx Shaping
- Finite-Length DFE Results
- Discussions
- Example Jitter Effects
- Conclusions & Recommendation

Assumptions

- IL limit from 802.3bp [Link Segment Baseline-02].
- PSANEXT and PSAACRF as per [herman_3bp_01_0713].
- Background noise at -140dbm/Hz.
- 10% bandwidth overhead.
- Tx PSD mask based on [Tazebay_3bp_01_0626 13] and modified versions for ease of implementation.

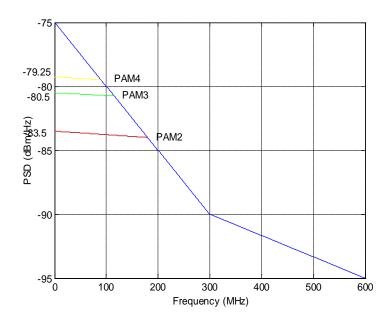


Table - Launch amplitude of modified TX PSD masks.

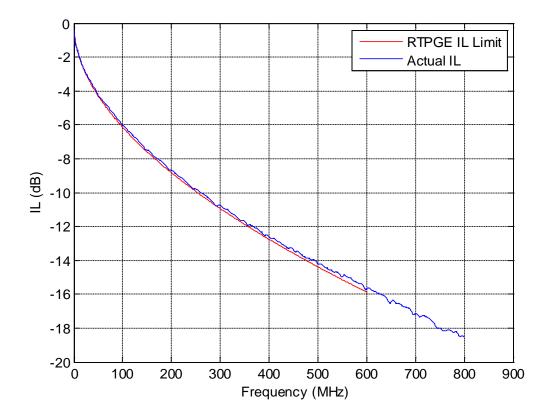
Modulation	PAM-2	PAM-3	PAM-4
Tx P-P Amplitude (V)	1	1.37	1.55

Infinite-Length DFE Results

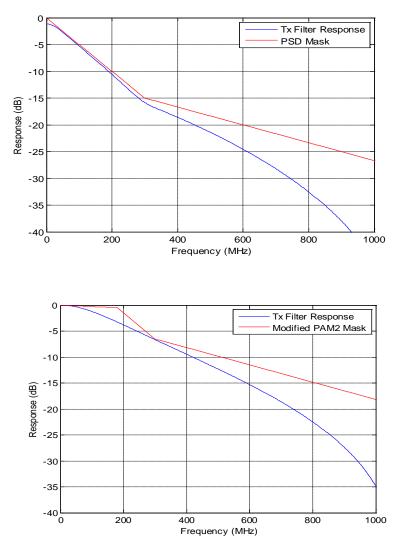
Table - Results of Original Tx PSD Mask (15m/2m*).

Modul.	SNR (dB)	Raw Eye Height (mV)	Eye Height @1e-10 (mV)	First FB Tap
PAM-2	35.1/ <mark>37.0</mark>	225/ <mark>603</mark>	200/549	1.33/1.13
PAM-3	39.9/ <mark>40.9</mark>	205/ <mark>456</mark>	183/ <mark>413</mark>	1.17/1.10
PAM-4	42.0/ <mark>42.9</mark>	179/ <mark>373</mark>	159/ <mark>335</mark>	1.11/1.07

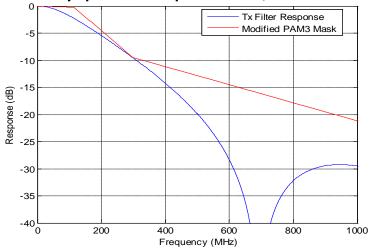
Table - Results of Modified Tx PSD Masks (15m/2m).


Modul.	SNR (dB)	Raw Eye Height (mv)	Eye Height @1e-10 (mv)	First FB Tap
PAM-2	34.7/ <mark>36.7</mark>	192/ <mark>544</mark>	169/ <mark>493</mark>	1.24/1.06
PAM-3	39.5/ <mark>40.7</mark>	188/ <mark>430</mark>	167/ <mark>389</mark>	1.11/1.04
PAM-4	41.8/ <mark>42.7</mark>	168/ <mark>358</mark>	148/ <mark>320</mark>	1.05/1.03

*2m channel at 125C without connectors.


IEEE 802.3bp RTPGE --- Jan 2014 Interim Meeting

A "Real" Channel


• Created a channel to fit the IL limit from a real channel measured by Commscope.

Tx PSD Shaping

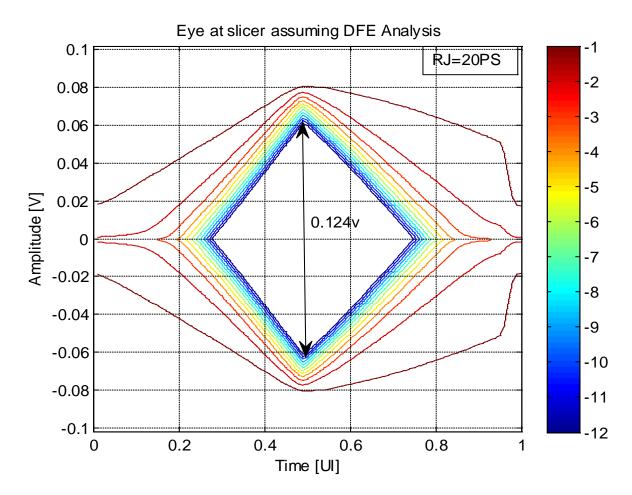
- A digital FIR filter to fit the original Tx PSD mask.
- Ist order Butterworth filter with cutoff frequencies optimized to fit the modified Tx PSD masks.
- The gaps between the mask and actual filter responses, particularly at Nyquist frequencies, indicate loss.

IEEE 802.3bp RTPGE --- Jan 2014 Interim Meeting

Finite-Length DFE Results

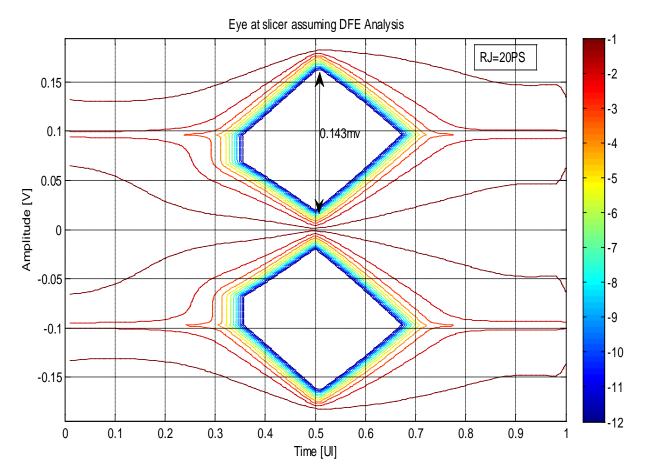
Table - Results of Original Tx PSD Mask.

Modul.	SNR (dB)	Raw Eye Height (mV)	Eye Height @1e-10 (mV)	First FB Tap	Max FFE Gain (dB)
PAM-2	33.6	209	181	1.54	0.075
PAM-3	38.7	197	174	1.22	0.002
PAM-4	40.9	171	147	1.11	0.001


Table - Results of Modified Tx PSD Masks.

Modul.	SNR (<i>dB</i>)	Raw Eye Height (mV)	Eye Height @1e-10 (mV)	First FB Tap	Max FFE Gain (dB)
PAM-2	32.1	165	136	1.17	1.4
PAM-3	38.4	183	161	0.89	0.01
PAM-4	40.2	163	140	0.77	0.001

Discussions


- With 2m cable, all 3 modulation schemes can provide immunity more than 300mv.
- How much RFI immunity is required for the worst-case channel?
 - It's possible to support the most strict BCI test with 2m cables and 100mv RFI immunity for 15m cables.
- Only background noise and Xtalks were considered in the simulations. Other implementation losses/impairments such as ADC, jitter, non-ideal equalizer settings could be more dominant factors.
- Even with ENOB 6 in PAM2, ADC quantization noise will be at least comparable to Xtalks and background noise combined.
- Since RFI can come at any frequency, eye opening needs to be bigger than the RFI amplitude multiplied by the maximal FFE gain in frequency.
 Eyeheight_{pp}>RFI_{pp}*Gffe_max
- Jitter can increase residual echo and reduce the eye opening.
- When all above considered, PAM2 implementation with modified PSD mask and Butterworth Tx filter is marginal to provide 100mv RFI immunity for 15m channels.

Example Jitter Effects

Eye height =124mv with 20 ps rms RJ, modified PSD mask (vs 136 mv w/o jitter).

Example Jitter Effects

Eye height =143mv with 20 ps rms RJ, modified PSD mask (vs . 161mv w/o jitter)

Conclusions & Recommendation

- With ideal DFE and TX psd masking, PAM2, 3 and 4 all provide good margin with PAM2 having the highest eye opening.
- PAM2 is most sensitive to effects of finite length equalization and Tx filtering.
- PAM3 provides the best compromise in terms of achievable performance and robustness to practical implementation loss.
- Recommend to adopt PAM3 as the modulation scheme.