IEEE RTPGE

Optimisation of physical layer components for RTPGE

Thomas Müller, Gunnar Armbrecht, Stephan Kunz (Rosenberger)

Supporters: Mehmet Tazebay (Broadcom) Thomas Suermann (NXP)

Rosenberger Hochfrequenztechnik GmbH & Co. KG

Outline

IEEE RTPGE

Channel definition

- MDI connector performance measurements
- Cable insertion loss over temperature

EMC

- Evaluation of the influence of inline connectors on EMC by means of stripline VNA measurements
- Outlook on using system simulation for predicating stripline test results

- Automotive twisted pair Ethernet connector
- Supports jacketed and unjacketed unshielded cables
- Electrically optimised for
 - Impedance matched to 100 Ohm
 - High balance
 - Low crosstalk
 - Minimum untwist area
- Open interface to the industry

- Whole link consists of
 - 2x breakout boards
 - 2x MDI connectors
 - 200 mm jacketed cable
- Plot against the following limits for unshielded Ethernet connectors:
 - Cat 5 (IEC 60603-7-2)
 - Cat 6a (ISO/IEC 60603-7-41)
 - OPEN alliance spec draft v0.3

MDI connector performance VNA measurements – Return- and insertion-loss

IEEE RTPGE

* Including breakout board

MDI connector performance VNA measurements - Balance

MDI connector performance VNA measurements - Crosstalk

MDI connector performance Differential impedance – Comparison to standard contact

- 700 ps rise time 100 Ω ± 10 Ω (~ 500 MHz)
- Keeping the untwist length small is essential
- > This is issue is not addressed by standard contacts (e.g. USCar).

Cable insertion loss over temperature Measurement setup

- Cable of length 10 m is coiled on a conductive drum with 10 mm of Rohacell[®] as insulation material
- Breakout-board ground is connected to conducting drum to close the common mode loop

Cable insertion loss over temperature DUT overview

Cable insertion loss over temperature

Results at room temperature

- Unjacketed cables can provide low insertion loss at the expense of unstable balance and environmental robustness
- 0.14 qmm cables provide low insertion loss if they are shielded or jacketed with proper material

Cable insertion loss over temperature Results at 125°C

- PVC is not appropriate for high temperatures
- Cables with 0.14 qmm with optimised jacket material provide low insertion loss (~ 18% increase to room temperature) and high balance

EMC – Influence of inline connectors Measurement setup

- Measure differential and common mode coupling to stripline in a three port NWA measurement
- DUT length 2.0 m
- Both ends connected to ground plane

EMC – Influence of inline connectors Results for standard cable and contacts

IEEE RTPGE

2 x 0.35 qmm unjacketed

Typical unjacketed cable

EMC – Influence of inline connectors Results for optimised cable and connector

IEEE RTPGE

2 x 0.14 qmm unjacketed

Optimised jacketed cable

EMC – Influence of inline connectors Results for shielded cables and connectors

Shielded cables and connectors provide best EMC performance

- I Gbit/s PRBS10 signal source
- 0.2 V peak to peak
- 250 ps rise time filter
- 3rd order low pass (600 MHz)
- 3-port s-parameter file from stripline measurement
- Voltage probe at the stripline measurement output

IEEE RTPGE

 If input spectrum and transfer function to stripline are known, the emitted spectrum can be predicted

ton stripline emission system simulation FC=300MHz FC=300MHz

FC=300MHz

- Three bit sources combined
- 0.4 V peak to peak

+

- 250 ps rise time filter
- 3rd order low pass (300 MHz)
- 3-port s-parameter file from stripline measurement
- Voltage probe at the stripline measurement output

- With PAM4, the input voltage can be increased while maintaining the same emission peak level
- Points which need to be looked at
 - Detectors (e.g. peak, quasi-peak)
 - Measurement time and bandwidth
 - Quality and parameters of the source models