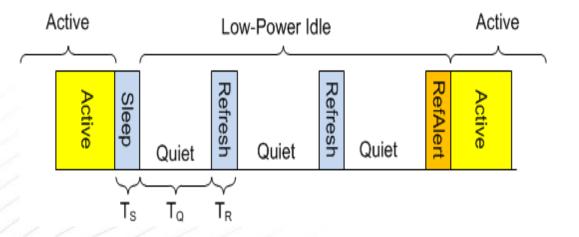
EEE Proposal for 1000BASE-T1

San Diego, CA July 16, 2014

Jim Graba jgraba@broadcom.com

Contributors

- Ahmad Chini
- German Feyh
- Mehmet Tazebay
- Mike Tu
- Peiqing Wang


Overview

- General 1000BASE-T1 EEE Format
- EEE Tradeoffs
- Use Similar 10G LPI Timing?
- Alert & Refresh
- LPI Exit Case Analysis
- LPI Parameter Choices
- Conclusions

General 1000BASE-T1 EEE Format

10G EEE provides a baseline

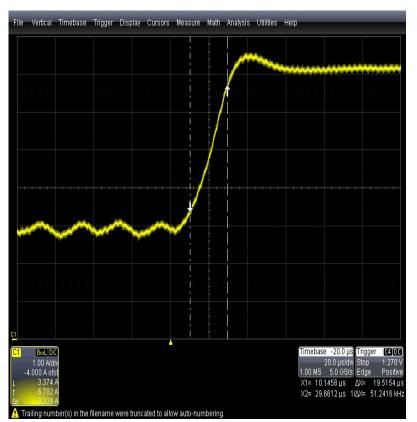
- Use Refresh segments to allow adaptation while dissipating little power
- Leave LPI mode without incurring a large latency
- Allow asymmetrical LPI mode (1000BASE-T EEE did not)

1000BASE-T1 EEE differences with 10G EEE

- One twisted pair
- Refresh can use the same modulation as Normal data opportunity for simplification
- Reed Solomon frame is larger than 10G's LDPC frame

EEE Tradeoffs

Adaptation

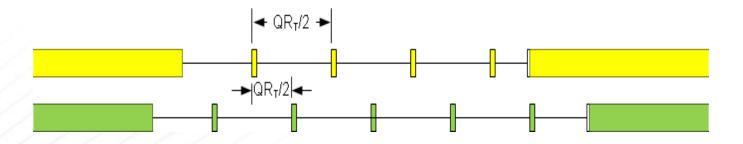

- Updates are decimated by RefreshLen / QRPeriod
- Loop BW decrease during LPI is roughly proportional to the decimation
- Sampling phase can drift during last Quiet before exiting LPI mode

Better power savings => more latency

- Analog circuits take time to obtain full capability when leaving a low power state
- Regulator circuits take time to settle LPI mode

• 1000BASE-T1 EEE vs 10G EEE

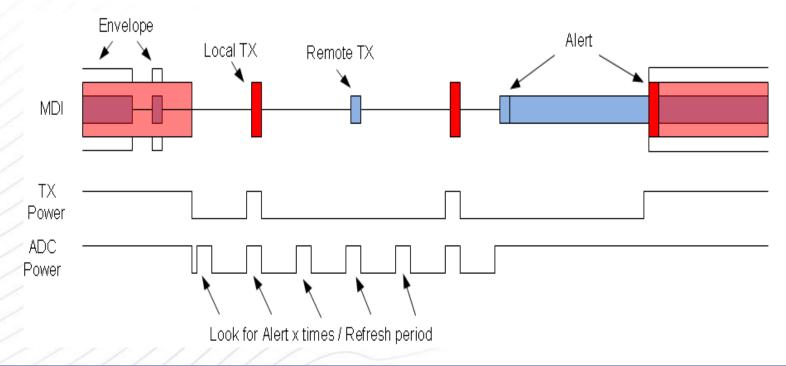
- Less current swing between power states
- PAM3 is less sensitive to phase offset compared to 10G's DSQ
- Only 1 twisted pair to deal with => less Refresh congestion
- ECC blocks are much bigger



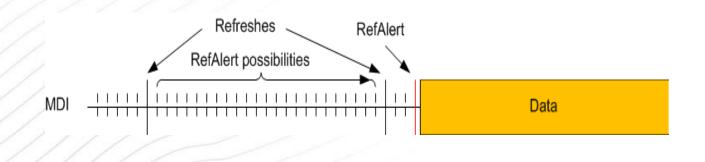
Power supply current at LPI exit

Use similar 10G LPI timing?

On a single twisted pair the Quiet/Refresh period is ~163us


- Adaptation decimation = 512/4 = 128 = LPI adaptation rate = Normal/128
- 10G time between any TX or RX Refresh was ~20us
- Now that time (QR_T/2) would be 80us. Should we reduce it to 20us for 1000BASE-T1 EEE?

- If we reduce QR_T too much we lose the capability to put the RX AFE in a low power state
 - See next page
- Need to align Slave RX and TX Refreshes during Training akin to 10G LPI


Alert

- 10G EEE Alert could start at any 0.32us interval => the Alert twisted pair channel must be powered on continually
 - Following this blindly means the ADC cannot power down
- Solution: allow the Alert to only appear at discrete times
 - Now the ADC can be powered on at those times only to check for Alert
 - Need enough time between Alert possibilities to power down => long Quiet time

Embed Alert into Refresh

- During LPI mode Refreshes consist of zeros scrambled and converted to PAM3 symbols
- To leave LPI mode transmit a Refresh with a scrambled pattern instead of zeros - RefAlert

RefAlert composition

Length

- Long enough to reliably detect the embedded Alert pattern
- Enough time after pattern detection to account for detection latency
- 3xPRS* of Alert + 2xPRS filled with scrambled zeros
- ~ 0.7 us <= ½ Refresh length

Benefits

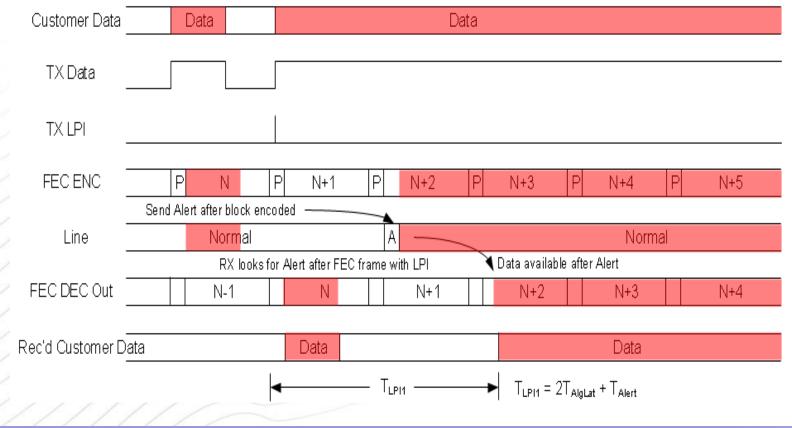
- Can be detected using normal data DSP => 10G Alert needs to be detected pre-DSP
- Don't have to deal with non-random echo => 10G is a fixed pattern
- Power on time for possible RefAlert = 1/3 Refresh length

Leaving LPI – Case 2 (Table 78-4)

- Most likely •
- Keep RS frame cadence constant •
 - Use partially filled RS frames

CASE 2: Send data while in LPI mode

Customer Data	Data				Data	а	
TX Data							
TX LPI							
FEC ENC	P N P	N+1 P	N+2	P N+3	P N+4	er for Alert	5
Line	Normal			Q/R	A Norm	nal	
FEC DEC Out	N-1	N	N+1	N+2	N+3	N+4	1
Rec'd Customer Da	ta	Data					
			T _{lp2}	= T _{AlgLat} + T _{Alert}	-		
Version 1.0		IEEE 802 3bp Tag	k Forco July	2014			Page


Leaving LPI – Case 1

Send data immediately after signaling intention to enter LPI

- Worst latency
- Well within 16.5us

Corner case

LPI parameters choices

- 1000BASE-T1 RS frames are much larger than 10G LDPC frames
 - These are too large to use to place Refreshes
 - Use partial RS frames (proposed by William Lo)
 - Use Broadcom's 3B2T RS(450, 406) scheme

Parameter	10G EEE	1000BASE-T1 EEE	units
RS _T	0.32	3.6	us
PRS _T	N/A	144	ns
QR _T	163.84	108	us
Refresh _T	1.28	1.44	us
QR _{Ratio}	128	75	$Refresh_T/QR_T$
Alert _⊤	1.28	0.72	us
AlertGranularity _T	0.32	4.03	us

Conclusion

- Propose we use 10G EEE type LPI
- Propose we embed Alert into Refresh
- Propose we keep the RS framing phase constant throughout the LPI process
- Need to determine parameters
- Need to specify LPI alignment during training