## Training \& EEE Proposal

IEEE 802.3bp - Plenary Meeting - July 2014
William Lo, Marvell

## Agenda

- Leverage Clause 55 10GBASE-T Training and EEE and adapt for 1000BASE-T1
- Present proposal with parameterized values
- Make tentative recommendations on the actual parameters
- Conclusions and next steps



## 1000BASE-T similarities to 10GBASE-T

1000BASE-T1

- 750MHz, PAM 3, 1 channel


IEEE 802.3bp RTPGE - July 2014 Plenary Meeting

- 10GBASE-T
- 800MHz, PAM 16, 4 channels



## Definitions (Since we parameterized everything)

- $\mathrm{RS}_{3}=$ Number of PAM3 symbols in Reed Solomon frame
$\Rightarrow \mathrm{RS}_{\mathrm{T}}=$ Duration of Reed Solomon frame in ns
- $\mathrm{PRS}_{3}=$ Number of PAM3 symbols in partial Reed Solomon frame
- $\mathrm{PRS}_{\mathrm{T}}=$ Duration of partial Reed Solomon frame in ns
- PF = Number of partial RS frames per RS frame $=\mathrm{RS}_{3} / \mathrm{PRS}_{3}$
- QRF = Number of RS $_{\text {T }}$ frames time per EEE Quiet/Refresh cycle
- PFC = Partial RS frame count mod (QRF $\times$ PF)
- AF = Number of partial RS frames separating valid alert start points


## PHY TRAINING



## 10GBASE-T Training

- PAM2 LFSR sequence for training
- First bit of $\mathbf{2 5 6}$ symbols inverted. Used for LDPC block boundary
- LDPC frame duration is exactly 256 symbol time
- Final 128 bit of every 64 ${ }^{\text {th }} \mathbf{2 5 6}$-symbol group XOR info field bits
- Used to exchange training status with link partner
- Exchange countdown timer to anticipate transition in training states
- EEE tracks LDPC frame number mod 512 for EEE timing purposes
- EEE events transition on LDPC frame boundaries
- Slave must track master training sequence within 1 LPDC frame



## 1000BASE-T1 Training

- Use same PAM2 LFSR sequence for training
- Issue - 1 RS frame a lot longer than 1 LDPC frame
- RS(180, 154, $2^{11}$ ) = 1680 ns
- RS(360, 308, $2^{11}$ ) = 3360 ns
- RS(630, 539, $2^{11}$ ) = 5880 ns
- Want bit inversion and info field to occur more frequently given nosier environment
- Solution - Introduce partial RS frame
- Divide RS frame time into PF number of $\mathrm{PRS}_{3}$ symbol groups
- Info field occurs once per RS frame time. Indicated by XORed 0xBBA7 pattern
- Info field first 64 bits of $\mathrm{PRS}_{3}$ symbol group to avoid offset calculations. Can make final instead 64 bits if we like.



## Info Field

## Simplify to 64 bits.

- No need for PBO and THP
- No transition counter needed
- No PBO or THP so no need to count down to readapt DSP to new TX settings
- Significantly speeds up training
- Partial RS Frame Count (PFC) used to establish time synchronization for EEE
- Simpler mechanism than using transition counter to zero LDPC frame count on entering PCS_Test training state in 10GBASE-T
- Free running on 1000BASE-T1 master
- Slave must match partial frame count (PFC) to within +0/-1 partial RS frame measured at the receiver input

| 1000BASE-T1 | 10GBASE-T |
| :---: | :---: |
| $0 \times B B$ | $0 \times B B$ |
| $0 \times 47$ | 0xA7 |
| $0 \times 00$ | 0x00 |
| Message | 0x00 |
| Partial frame | TX Setting |
| (QRF x PF) | TX Setting |
| CRC16 | TX Setting |
| CRC16 | Message |
|  | SNR |
|  | (format dependent) Transition counter -THP Coefficient Vendor specific |
|  | CRC16 |
|  | CRC16 |

## Example of slave partial RS frame count matching

- PF x $\mathrm{PRS}_{3}$ symbols per training sequence
- Master free runs and increments PFC by PF every training sequence
- mod (QRF x PF) implied in diagram
- Slave locks to within +0l-1
- No need to have slave info field within 1 partial RS frame of master (Ex 2)
- Ok for slave to calculate offset
- Slave accepts master PFC only if CRC16 is good.
- Robust to noise since not every info field needs to be processed to recover master PFC

Master
(Free running)


Slave
(Ex 1)

Slave
(Ex 2)


## PHY Control State Machine

- Greatly simplified since no PBO or THP coeff exchanged
- Sketch of state machine
- Master transmits PAM 2 and slave silent
- Both transmit PAM2 in Training
- Message exchanged in info field indicating ready to move to PAM 3
- Send PAM3 idles for some time
- Link up and send data
- Details of state transition TBD



## ENERGY EFFICIENT ETHERNET



## EEE - Entering LPI

## - 10GBASE-T

- If LPI seen on XGMII fill remaining bytes in LDPC frame with LPI symbol. Then send 9 more LDPC frames with nothing but LPI symbols.


## - 1000BASE-T1

- Do the same thing by sending Enter_LPI_RS number of RS frames with nothing but LPI symbols
- Don't really need to send too many RS frames.
- Should be able to see lots of $8 \mathrm{~N} /(8 \mathrm{~N}+1)$ blocks with all LPI symbols in uncorrectable RS block


## EEE - Quiet / Refresh

## - 10GBASE-T

- LDPC frame count between master and slave is within one LDPC frame
- Refresh time is 4 LDPC frame time
- Refresh spread out so only 1 PHY is sending refresh at any given time
- Refresh uses same PAM 2 LFSR as during training except info field is not sent



## EEE - Quiet / Refresh

1000BASE-T

- Same concept except use partial RS frame
- Refresh is Refresh_LPI $\times \mathrm{PRS}_{3}$ number of symbols
- Quiet/Refresh cycle is QF $\times \mathrm{RS}_{\mathrm{T}}=\mathrm{QF} \times \mathrm{PF} \times \mathrm{PRS}_{\mathrm{T}}$ or QF $\times \mathrm{PF} \times \mathrm{PRS}_{3}$ symbols
- Temporal location of partial RS frame count (PFC) is determined during training

Partial RS frame mod (QF x PF) Master
Slave


## EEE - Exit LPI

- 10GBASE-T
- Send 128 bit PAM 2 Alert pattern 7 times, followed by 128 bit of zeros, followed by 9 LDPC frames of all idle symbols to exit LPI
- Alert pattern can occur at any time but can only start at LDPC frame boundary
- Alert pattern generated on channel A only for master and channel C only for slave


## - Implications

- Receiver attached to channel A or C cannot really shut down since alert pattern can occur any time
- For 1000BASE-T1 with only 1 channel - neither PHY receiver can shut down with this scheme
- Total wake latency for 10GBASE-T is 7 alert pattern + 128 zeros + 9 LDPC frames of idle +1 LDPC worst case wait time to align to boundary $=4.48$ us
- Short wake up time limits analog power savings


## EEE - Exit LPI, 1000BASE-T1 improvements

- Use 1000BASE-T wake time of 16.5 us instead of 4.48us of 10GBASE-T to allow more power savings
- Allow alert signal to be sent only during certain windows
- Allows receiver to power down outside window
- Stagger windows between master and slave so alert signal never overlap
- Will increase worst case wake time waiting for window
- Align refresh with alert window
- Space alert windows $2 \times \mathrm{AF} \times \mathrm{PRS}_{3}$ symbols apart and stagger master and slave windows by $\mathrm{AF} \times \mathrm{PRS}_{3}$



## EEE - Exit LPI Procedure

- Similar to 10GBASE-T
- Send Alert_LPI number of alert sequences starting at valid alert boundary
- Send $\mathrm{PRS}_{3}$ number of zeros
- Send Exit_LPI_RS number of RS frames with idle symbols only
- Resume normal operation


## Suggested Parameter Values

## 11-bit RS symbols and 11bit - 7 PAM3 @ 750MHz

| Symbol | Definition | RS(180, 154) | RS(360, 308) | RS(630, 539) |
| :--- | :--- | :---: | :---: | :---: |
| RS3 | \# PAM3 symbols per RS frame | 1260 | 2520 | 4410 |
| RST | Duration of RS frame (ns) | 1680 | 3360 | 5880 |
| PRS3 | \# PAM3 symbols per partial RS frame | 90 | 90 | 90 |
| PRST | Duration of partial RS frame (ns) | 120 | 120 | 120 |
| PF | \# partial frames per RS frame | 14 | 28 | 49 |
| QRF | \# RS frame per quiet refresh cycle | 128 | 64 | 36 |
| AF | \# partial RS frames separating alert | 28 | 28 | 28 |
| Refresh_LPI | \# partial RS frames for refresh | 12 | 12 | 12 |
| Enter_LPI_RS | \# RS frames with all LPI to enter LPI | 4 | 2 | 1 |
| Alert_LPI | \# alert sequences to exit LPI | 11 | 11 | 11 |
| Exit_LPI_RS | \# RS frames with all idles upon exit LPI | 4 | 2 | 1 |
| Alert_sym | \# symbols in alert sequence | 90 | 90 | 90 |

## Choice of partial RS frame size $\left(\mathrm{PRS}_{3}\right)$ not arbitrary

- During LPI scrambler has to keep running with all bytes of $8 \mathrm{~N} /(8 \mathrm{~N}+1)$ encoder being LPI symbols
- After exiting LPI the RS frame can align to any partial RS frame boundary to minimize wake time
- Hence $\mathrm{PRS}_{\mathrm{T}}$ must have a duration of exactly an integer multiple of $\mathbf{8 N}$ ns to maintain scrambler sync
- $\mathrm{PF}=\mathrm{RS}_{3} / \mathrm{PRS}_{3}=\mathrm{RS}_{\mathrm{T}} / P \mathrm{PR}_{\mathrm{T}}$ must be an integer


## Choice of Alert sequence

- 90 bits long to match $\mathrm{PRS}_{3}$
- Large auto correlation for reliable detection
- Master

| -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 |
| -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
| -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 |

- Slave

| -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 |
| -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |

## Next Steps

- Propose we use Clause 55 as the starting point for training and EEE

Propose we adopt modifications shown here as 1000BASE-T1 baseline

- Need more work to fine tune the parameters


## THANK YOU

