

Marvell. Moving Forward Faster

Training & EEE Proposal

IEEE 802.3bp - Plenary Meeting - July 2014

William Lo, Marvell

1

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

Agenda

- Leverage Clause 55 10GBASE-T Training and EEE and adapt for 1000BASE-T1
- Present proposal with parameterized values
- Make tentative recommendations on the actual parameters
- Conclusions and next steps

1000BASE-T similarities to 10GBASE-T

• 1000BASE-T1

• 750MHz, PAM 3, 1 channel

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

▶ 10GBASE-T

800MHz, PAM 16, 4 channels

Definitions (Since we parameterized everything)

- **RS₃** = Number of PAM3 symbols in Reed Solomon frame
- **R** S_{T} = Duration of Reed Solomon frame in ns
- PRS₃ = Number of PAM3 symbols in partial Reed Solomon frame
- **PRS** $_{T}$ = Duration of partial Reed Solomon frame in ns
- **PF** = Number of partial RS frames per RS frame = RS_3 / PRS_3
- QRF = Number of RS_T frames time per EEE Quiet/Refresh cycle
- PFC = Partial RS frame count mod (QRF x PF)
- AF = Number of partial RS frames separating valid alert start points

PHY TRAINING

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

10GBASE-T Training

- PAM2 LFSR sequence for training
- First bit of 256 symbols inverted. Used for LDPC block boundary
 - LDPC frame duration is exactly 256 symbol time
- Final 128 bit of every 64th 256-symbol group XOR info field bits
 - Used to exchange training status with link partner
 - Exchange countdown timer to anticipate transition in training states

EEE tracks LDPC frame number mod 512 for EEE timing purposes

- EEE events transition on LDPC frame boundaries
- Slave must track master training sequence within 1 LPDC frame

1000BASE-T1 Training

- Use same PAM2 LFSR sequence for training
- Issue 1 RS frame a lot longer than 1 LDPC frame
 - RS(180, 154, 2¹¹) = 1680 ns
 - RS(360, 308, 2¹¹) = 3360 ns
 - RS(630, 539, 2¹¹) = 5880 ns
- Want bit inversion and info field to occur more frequently given nosier environment
- Solution Introduce partial RS frame
 - Divide RS frame time into PF number of PRS₃ symbol groups
 - Info field occurs once per RS frame time. Indicated by XORed 0xBBA7 pattern
 - Info field first 64 bits of PRS₃ symbol group to avoid offset calculations. Can make final instead 64 bits if we like.
 Training sequence = 1 RS frame time

Info Field

Simplify to 64 bits	1000BASE-T1	10GBASE-T
No pood for PBO and THP	0xBB	0xBB
	0xA7	0xA7
No transition counter needed	0x00	0x00
No PBO or THP so no need to count down to	Message	0x00
readapt DSP to new TX settings	Partial frame	TX Setting
Significantly speeds up training	(QRF x PF)	TX Setting
Partial RS Frame Count (PFC) used to	CRC16	TX Setting
establish time synchronization for EEE	CRC16	Message
 Simpler mechanism than using transition counter to zero LDPC frame count on entering PCS_Test training state in 10GBASE-T 		SNR (format dependent)
Free running on 1000BASE-T1 master		_ Transition _ counter
 Slave must match partial frame count (PFC) to within +0/-1 partial RS frame measured at the receiver input 		_THP Coefficient_ Vendor specific _
		CRC16
		CRC16
IEEE 802.3bp RTPGE – July 2014 Plenary Meeting	8	M A R V E L L®

Example of slave partial RS frame count matching

- PF x PRS₃ symbols per training sequence
- Master free runs and increments PFC by PF every training sequence
 mod (QRF x PF) implied in diagram
- Slave locks to within +0/-1
 - No need to have slave info field within 1 partial RS frame of master (Ex 2)
 - Ok for slave to calculate offset
 - Slave accepts master PFC only if CRC16 is good.
 - Robust to noise since not every info field needs to be processed to recover master PFC

PHY Control State Machine

- Greatly simplified since no PBO or THP coeff exchanged
- Sketch of state machine
 - Master transmits PAM 2 and slave silent
 - Both transmit PAM2 in Training
 - Message exchanged in info field indicating ready to move to PAM 3
 - Send PAM3 idles for some time
 - Link up and send data

Details of state transition TBD

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

ENERGY EFFICIENT ETHERNET

11

EEE – Entering LPI

10GBASE-T

 If LPI seen on XGMII fill remaining bytes in LDPC frame with LPI symbol. Then send 9 more LDPC frames with nothing but LPI symbols.

1000BASE-T1

- Do the same thing by sending Enter_LPI_RS number of RS frames with nothing but LPI symbols
- Don't really need to send too many RS frames.
- Should be able to see lots of 8N/(8N+1) blocks with all LPI symbols in uncorrectable RS block

EEE – Quiet / Refresh

10GBASE-T

- LDPC frame count between master and slave is within one LDPC frame
- Refresh time is 4 LDPC frame time
- Refresh spread out so only 1 PHY is sending refresh at any given time
- Refresh uses same PAM 2 LFSR as during training except info field is not sent

EEE – Quiet / Refresh

▶ 1000BASE-T

- Same concept except use partial RS frame
- Refresh is Refresh_LPI x PRS₃ number of symbols
- Quiet/Refresh cycle is QF x RS_T = QF x PF x PRS_T or QF x PF x PRS₃ symbols
- Temporal location of partial RS frame count (PFC) is determined during training

EEE – Exit LPI

10GBASE-T

- Send 128 bit PAM 2 Alert pattern 7 times, followed by 128 bit of zeros, followed by 9 LDPC frames of all idle symbols to exit LPI
- Alert pattern can occur at any time but can only start at LDPC frame boundary
- Alert pattern generated on channel A only for master and channel C only for slave

Implications

- Receiver attached to channel A or C cannot really shut down since alert pattern can occur any time
- For 1000BASE-T1 with only 1 channel neither PHY receiver can shut down with this scheme
- Total wake latency for 10GBASE-T is 7 alert pattern + 128 zeros + 9 LDPC frames of idle + 1 LDPC worst case wait time to align to boundary = 4.48 us
- Short wake up time limits analog power savings

EEE – Exit LPI, 1000BASE-T1 improvements

- Use 1000BASE-T wake time of 16.5us instead of 4.48us of 10GBASE-T to allow more power savings
- Allow alert signal to be sent only during certain windows
 - Allows receiver to power down outside window
 - Stagger windows between master and slave so alert signal never overlap
 - Will increase worst case wake time waiting for window
 - Align refresh with alert window
 - Space alert windows 2 x AF x PRS₃ symbols apart and stagger master and slave windows by AF x PRS₃

EEE – Exit LPI Procedure

- Similar to 10GBASE-T
- Send Alert_LPI number of alert sequences starting at valid alert boundary
- Send PRS₃ number of zeros
- Send Exit_LPI_RS number of RS frames with idle symbols only
- Resume normal operation

17

Suggested Parameter Values

11-bit RS symbols and 11bit – 7 PAM3 @ 750MHz

Symbol	Definition	RS(180, 154)	RS(360, 308)	RS(630, 539)
RS3	# PAM3 symbols per RS frame	1260	2520	4410
RST	Duration of RS frame (ns)	1680	3360	5880
PRS3	# PAM3 symbols per partial RS frame	90	90	90
PRST	Duration of partial RS frame (ns)	120	120	120
PF	# partial frames per RS frame	14	28	49
QRF	# RS frame per quiet refresh cycle	128	64	36
AF	# partial RS frames separating alert	28	28	28
Refresh_LPI	# partial RS frames for refresh	12	12	12
Enter_LPI_RS	# RS frames with all LPI to enter LPI	4	2	1
Alert_LPI	# alert sequences to exit LPI	11	11	11
Exit_LPI_RS	# RS frames with all idles upon exit LPI	4	2	1
Alert_sym	# symbols in alert sequence	90	90	90

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

Choice of partial RS frame size (PRS₃) not arbitrary

- During LPI scrambler has to keep running with all bytes of 8N/(8N+1) encoder being LPI symbols
- After exiting LPI the RS frame can align to any partial RS frame boundary to minimize wake time
- Hence PRS_T must have a duration of exactly an integer multiple of 8N ns to maintain scrambler sync
- **PF** = $RS_3 / PRS_3 = RS_T / PRS_T$ must be an integer

Choice of Alert sequence

- 90 bits long to match PRS₃
- Large auto correlation for reliable detection

Master

-1	-1	1	1	-1	-1	1	1	-1	-1
1	1	1	1	-1	-1	-1	-1	1	1
1	1	-1	-1	1	1	1	1	1	1
-1	-1	1	1	1	1	-1	-1	1	1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
1	1	1	1	1	1	-1	-1	-1	-1
-1	-1	1	1	-1	-1	1	1	1	1
1	1	1	1	-1	-1	-1	-1	1	1
-1	-1	1	1	-1	-1	-1	-1	-1	-1

Slave

-1	-1	-1	-1	-1	-1	1	1	-1	-1
1	1	-1	-1	-1	-1	1	1	1	1
1	1	1	1	-1	-1	1	1	-1	-1
-1	-1	-1	-1	1	1	1	1	1	1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
1	1	-1	-1	1	1	1	1	-1	-1
1	1	1	1	1	1	-1	-1	1	1
1	1	-1	-1	-1	-1	1	1	1	1
-1	-1	1	1	-1	-1	1	1	-1	-1

Next Steps

- Propose we use Clause 55 as the starting point for training and EEE
- Propose we adopt modifications shown here as 1000BASE-T1 baseline
- Need more work to fine tune the parameters

THANK YOU

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

22