

Marvell. Moving Forward Faster

Line Code and FEC Performance

IEEE 802.3bp - Plenary Meeting - July 2014

Zhenyu Liu, Marvell

1

Contributor

Phil Sun, Marvell

Shaoan Dai, Marvell

William Lo, Marvell

Line Codes Considered

▶ 11B7T

liu_3bp_01_0714.pdf, liu_3bp_01_0314.pdf

▶ 3B2T

shen_3bp_01_0314.pdf

▶ 10B7T

xiaofeng_3bp_02_0314.pdf

Coding Schemes

- Only RS codes are considered
- Comparison between codes with the similar FEC block size

Line Code	8N/(8N+1) Encoder	FEC	FEC N-K	FEC Block Size (ns)
11B7T	120/121	RS(360, 308, 2 ¹¹)	52	3360
3B2T	80/81	RS(420, 378, 2 ⁹)	42	3360
10B7T	112/113	RS(360, 339, 2 ¹⁰)	21	3360

Simulation Setup

- DFE only equalizer, completely cancel ISI
- AWGN $z_k^{(1)} \sim N(0, \sigma^2)$
 - P_{AWGN}=10log₁₀(σ²/(2/3)) (dB)
- NBI $z_k^{(2)} = Acos(2\pi(F_c/F_s)k+p_0)$
 - $P_{NBI} = 10 \log_{10}(A^2/2) (dB)$
 - NBI phase p₀ is randomized every 1000 FEC blocks

IEEE 802.3bp RTPGE – July 2014 Plenary Meeting

5

Simulation Setup

- Only invalid line code is considered as erasure in RS decoder.
 - Each erasure is counted as 0.5 error
- Block error rate (BLER) after FEC is compared for performance.
- Equalizer is not adaptive
 No "notch filter" to suppress NBI
- Baud rate = 750MHz
- 1D slicer used

NBI Tolerance: 5m Cable

- DFE for 5m cable
- AWGN power = -26dB
- $F_{c} = 191.25 MHz$

7

- 11B7T has the best performance
 - 0.7dB gain over 10B7T
 - 0.15dB gain over 3B2T

NBI Tolerance: 15m Cable

- 11B7T has the best performance
 - 0.8dB gain over 10B7T
 - 0.15dB gain over 3B2T

2-D Slicer

Delay cancellation of 1st tap of DFE for each pair of received PAM3 symbols

n: noise

Decide two PAM3 symbols together

$$y_{k+1} = x_{k+1} + x_k * w_0 + n_{k+1}$$

$$\hat{x}_k, \hat{x}_{k+1} = \arg \min_{x_{0,1} \in \{0, \pm 1\}^2} C[(y_k, y_{k+1}), (x_0, x_1)]$$

2-D Slicer

Pros

- Reduce error propagation from 1st DFE tap
- Cost function well defined for AWGN (Euclidian distance)
- Can be applied to all line codes

Cons

- Increased complexity
- For NBI noise, optimum cost function depends on frequency
- If NBI noise treated as AWGN, negative performance gain may happen

2-D Slicer for Different Line Codes

- > 3B2T: 8 possible candidates for (x_0, x_1) in the slicer.
 - Maximum likelihood detector for each 2D-PAM3 symbol.
- > 11B7T: 9 Possible candidates for (x_0, x_1) in the slicer
 - 7x 2-D slicer outputs are combined to 2x 7-D PAM3 symbols
 - Invalid 7-D PAM3 symbols can appear, but they only consist 6.7% of all possible 7-D symbols*
- 10B7T: 1x PAM2 slicer + 3x 2D-PAM3 slicer (L-shape)
 - Similar to 3B2T case
 - Not simulated due to time limit

*Invalid 7-D symbols can always be marked as erasure, but even for decoders without erasure capability, performance hit should be minimal.

2-D Eye Diagram with NBI

The different "constellation" of NBI on 2-D plane

- Phase randomized
- Some AWGN added

2-D Eye Diagram with NBI

2-D Eye diagram for 1D slicer and 2D slicer

- P_{NBI}=-11.2dB, P_{AWGN}=-26dB, F_c=191.25MHz
- w₀=0.42

Performance of 2D slicer

- DFE for 15m cable
- AWGN power = -26dB
- $F_{c} = 191.25 MHz$

11B7T/2D slicer overperforms 3B2T/2D slicer

2-D Eye Diagram with NBI

- 2-D eye diagram for 1D slicer and 2D slicer
 - P_{NBI}=-11.2dB, P_{AWGN}=-26dB, F_c=67.5MHz
 - w₀=0.42
- For optimum performance, some information about NBI is needed

If Euclidian Distance is Used...

If NBI property is unknown, additional wrong decision could be made with 2-D slicer

2D slicer worse than 1D slicer in some cases!

Euclidian distance used as cost function

Burst Correction

- Burst simulated as 250ns of -10dB AWGN
- Only FEC correction capability is considered
 - No "mark of erasure" information from slicer
- DFE for 2m cable
- Background AWGN -26dB

Line Code	BLER after FEC
11B7T	4.0x10 ⁻⁷
3B2T	7.2x10 ⁻⁵
10B7T	5.7x10 ⁻²

Burst Correction with Erasure

If erasure information is considered...

Line Code	Maximum Erasure Length (ns)
11B7T	485
3B2T	336
10B7T	196

Conclusion

- 11B7T and RS(360, 308, 2¹¹) has the lowest FEC block error rate for NBI noise simulations.
- 11B7T can deal with longest burst noise with or without erasure information.
- D slicer can be used for any PAM3 mapping, but may not always yield the best results.

THANK YOU

21