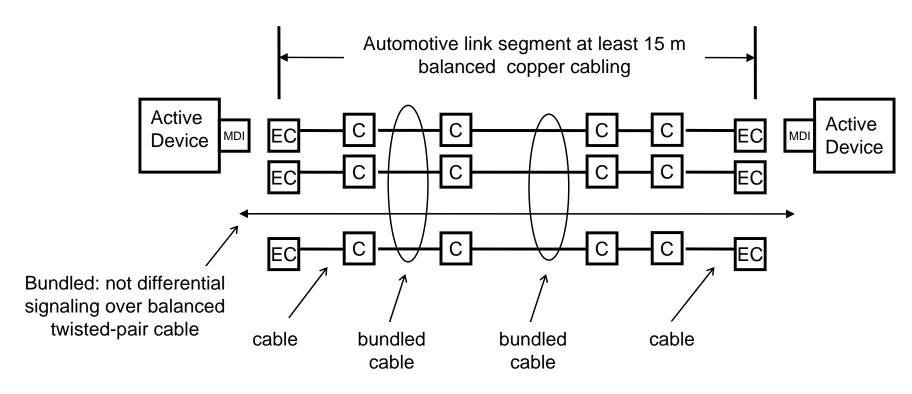
Reduced Twisted Pair Gigabit Ethernet Link Segment Characteristics

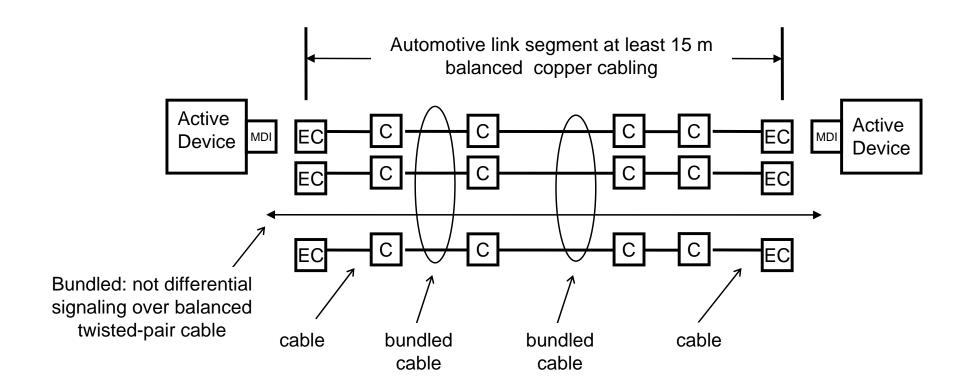

Orlando, Florida March 2013

Chris DiMinico MC Communications cdiminico@ieee.org

Discussion

- •Identification of link segment insertion losses for target topologies (15m and 40m) derived from cable and inline connector insertion losses
 - Inclusion of gauge and temperature dependencies
- Link segment insertion losses required for PHY considerations.

Automotive link segment


The IEEE 802.3 nomenclature is bracketed to identify relationship to the IEEE 802.3 definitions.

Length objective [EC] to [EC] at least15 m Number of inline connectors [C] = 4 c = inline connector

EC = connection to equipment

= Active electronics connector
[Medium dependent interface (MDI)]

Link segment transmission parameters

Link segment transmission and coupling parameters

- Insertion loss, return loss
- ■NEXT, FEXT, multiple disturber crosstalk
- Alien Crosstalk
- Balance

Cable insertion loss dB @ 500 MHz

AWG	Diameter (in)	Diameter (mm)	dB/m at 500 MHz solid	dB/m at 500 MHz stranded	dB/15m stranded	dB/40m stranded
23	0.022571	0.573314	0.45 ▶	0.54	8.15	21.72
24	0.020100	0.510549	0.51	0.61	9.15	24.39
25	0.017900	0.454655	0.57	0.68	10.27	27.39
26	0.015940	0.404881	0.64	0.77	11.54	30.76
27/	0.014195	0.360555	0.72	0.86	12.95	34.54
2/8	0.012641	0.321083	0.81	0.97	14.55	38.79
/29	0.011257	0.285931	0.91	\1.09	16.33	43.56
30	0.010025	0.254628	1.02	1.22	18.34	48.91
31	0.008927	0.226752	1.14	1.37	20.60	54.93
32	0.007950	0.201928	1.28	1.54	23.13	61.68

commercially available specified to 500 MHz

Reference IL = 1.82*SQRT(f) + 0.0091*f + 0.25/SQRT(f)

Usage of 26 and 27 stranded reported by survey respondents

^{**~12%} increase per gauge

^{***20%} increase for stranded

ANSI/TIA/EIA-568-C.2 – Cable insertion Loss

Temperature correction

•The maximum insertion loss for UTP horizontal cables shall be adjusted at elevated temperatures using a factor of 0.4 % increase per °C from 20 °C to 40 °C and 0.6% increase per °C for temperatures from 40 °C to 60 °C.

•The maximum insertion loss for ScTP horizontal cables shall be adjusted at elevated temperatures using a factor of 0.2% increase per °C from 20 °C to 60 °C.

UTP temperature correction to 60 °C

AW G	Diameter(in)	Diameter(mm)	dB/m at 500 MHz solid	dB/m at 500 MHz stranded	dB/15m stranded	dB/40m stranded
23	0.022571	0.573314	0.547	0.66	9.85	26.28
24	0.020100	0.510549	0.615	0.74	11.07	29.51
25	0.017900	0.454655	0.690	0.83	12.43	33.13
26	0.015940	0.404881	0.775	0.93	13.95	37.21
27	0.014195	0.360555	0.870	1.04	15.67	41.78
28	0.012641	0.321083	0.977	1.17	17.59	46.92
29	0.011257	0.285931	1.098	1.32	19.76	52.69
30	0.010025	0.254628	1.233	1.48	22.19	59.16
31	0.008927	0.226752	1.384	1.66	24.91	66.44
32	0.007950	0.201928	1.554	1.87	27.98	74.61

UTP	deg C	Correction factors	dB/m corrected to 60 deg C	dB/m 20 deg C
0.40%	20 to 40	0.080	0.489	0.453
0.60%	40 to 60	0.120	0.547	

ScTP temperature correction to 60 °C

AW G	Diameter (in)	Diameter (mm)	dB/m at 500 MHz solid	dB/m at 500 MHz stranded	dB/15m stranded	dB/40m stranded
23	0.022571	0.573314	0.489	0.59	8.80	23.46
24	0.020100	0.510549	0.549	0.66	9.88	26.35
25	0.017900	0.454655	0.616	0.74	11.09	29.58
26	0.015940	0.404881	0.692	0.83	12.46	33.22
27	0.014195	0.360555	0.777	0.93	13.99	37.31
28	0.012641	0.321083	0.873	1.05	15.71	41.89
29	0.011257	0.285931	0.980	1.18	17.64	47.04
30	0.010025	0.254628	1.101	1.32	19.81	52.83
31	0.008927	0.226752	1.236	1.48	22.24	59.32
32	0.007950	0.201928	1.388	1.67	24.98	66.61

ScTP	deg C	Correction factor	dB/m Corrected to 60 deg C	dB/m 20 deg C
0.20%	20 to 60	0.080	0.489	0.453

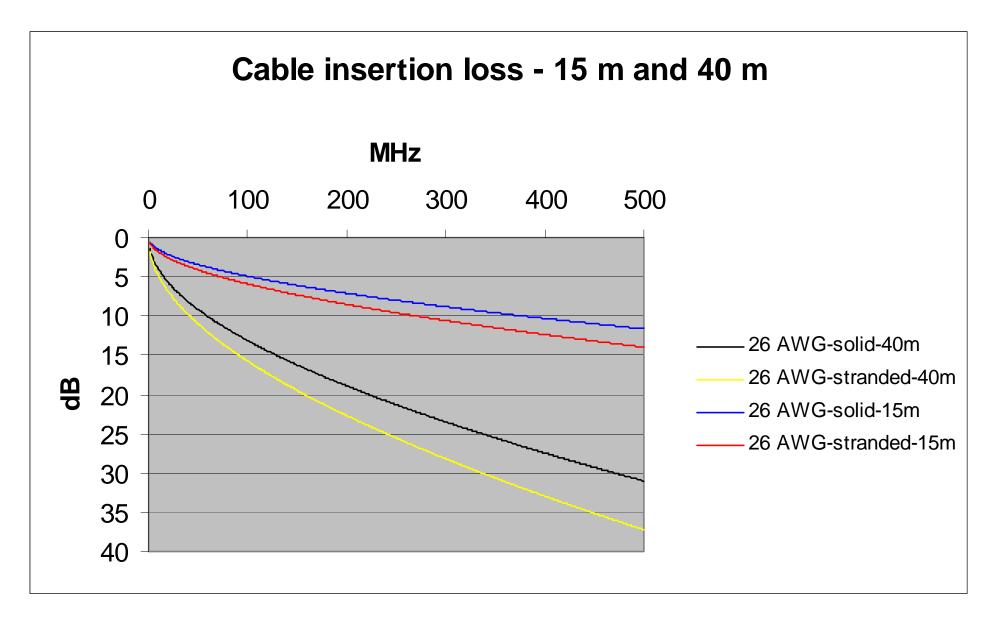
Automotive operating environment

Lifetime Requirements and Testing of ECUs

Active Operation: Typical Temperature-Load Distribution (ambient)

TLECU = ECU inner air	Typ. load (Passenger Car)		
temperature	Vehicle body, bulkhead	d, extension close to the engine	
-40°C10° C	6.0 %	480 h	
10°C45° C	20.0 %	1600 h	
45°C60° C	33.0 %	2640 h	
60°C70° C	18.0 %	1440 h	
70°C80° C	9.0 %	720 h	
85° C	3.0 %	240 h	
90° C	2.0 %	160 h	
95° C	1.7 %	136 h	
100° C	1.5 %	120 h	
105° C	1.4 %	112 h	
110° C	1.3 %	104 h	
115° C	1.2 %	96 h	
120° C	1.0 %	80 h	
125° C	0.9 %	72 h	
Total	100%	8000 h	

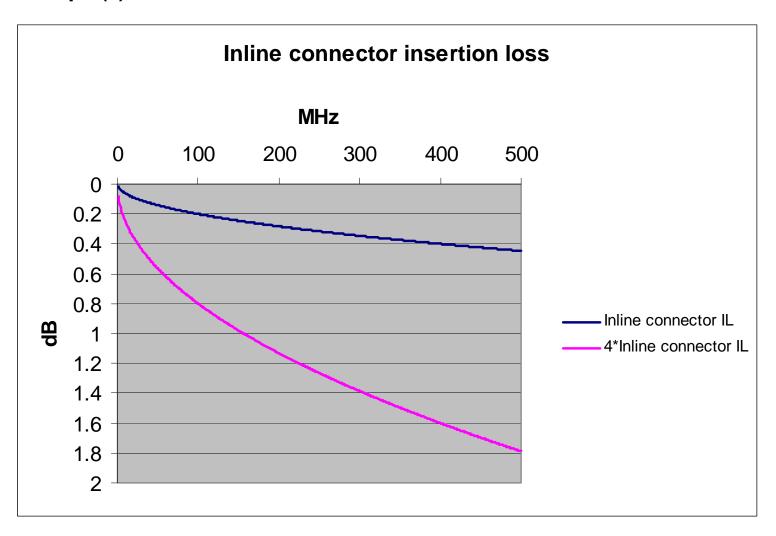
Automotive Electronics

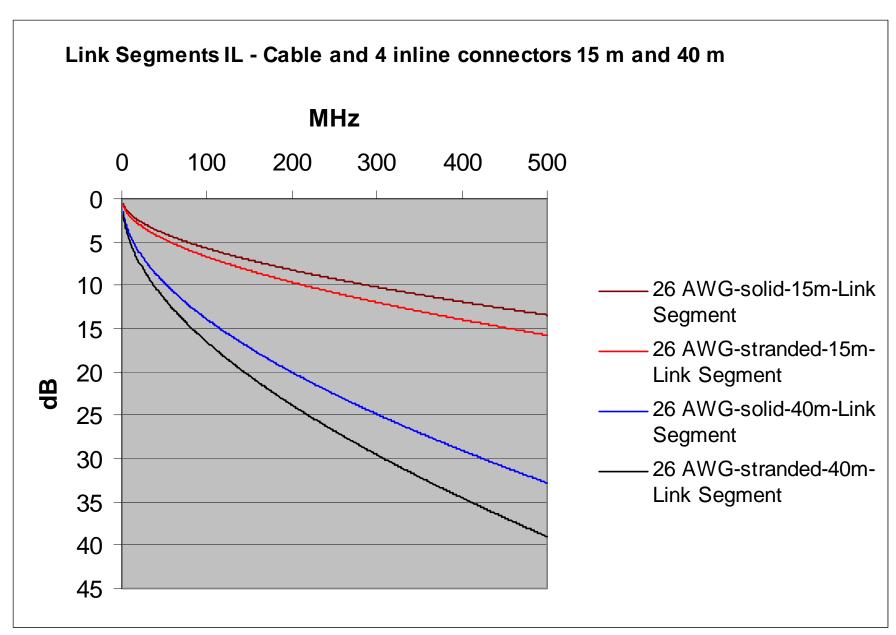

BOSCH

Non-PVC - Temperature correction to 125 °C

AW G	Diameter(in)	Diameter(mm)	dB/m at 500 MHz solid	dB/m at 500 MHz stranded	dB/15m stranded	dB/40m stranded
23	0.022571	0.573314	0.548	0.66	9.86	26.29
24	0.020100	0.510549	0.615	0.74	11.07	29.52
25	0.017900	0.454655	0.691	0.83	12.43	33.15
26	0.015940	0.404881	0.775	0.93	13.96	37.22
27	0.014195	0.360555	0.871	1.04	15.67	41.80
28	0.012641	0.321083	0.978	1.17	17.60	46.93
29	0.011257	0.285931	1.098	1.32	19.76	52.70
30	0.010025	0.254628	1.233	1.48	22.19	59.18
31	0.008927	0.226752	1.385	1.66	24.92	66.46
32	0.007950	0.201928	1.555	1.87	27.99	74.63

Non- PVC	deg C	Correction factor	dB/m Corrected to 60 deg C	dB/m 20 deg C
0.20%	20 to 125	0.210	0.548	0.453


Cable insertion loss - 15 m and 40 m


Insertion loss adjusted using a factor of 0.2% increase per °C from 20 °C to 125 °C

Inline connector insertion loss

- •Inline connector IL(f) = x*sqrt(f)
- •x=0.02*sqrt(f)

Link Segments – insertion loss

Cable insertion loss adjusted using a factor of 0.2% increase per °C from 20 °C to 125 °C 802.3bp (RTPGE)– March 2013

Summary

- •Insertion losses for link segments of 15 m and 40 m derived from 32 AWG to 23 AWG solid and stranded cables scaled from reference loss. Insertion loss adjusted for temperature.
 - Cable Reference IL =
 - 1.82*SQRT(f)+0.0091*f+0.25/SQRT(f) at 20 °C
 - •Inline connectors insertion loss modeled as 0.02*sqrt(f)
- •Link segment insertion losses required for PHY considerations.