

Marvell. Moving Forward Faster

Fast Synchronization Mechanism for 1000BASE-T1

IEEE 802.3bp - Plenary Meeting - March 2014

William Lo, Marvell

1

Objective

- Propose a mechanism that can quickly synchronize PHY and link partner prior to link training
- Synchronization allows common timeout start times to break any lockups that may occur during link training
- Discuss side benefits

Agenda

- Need for fast synchronization
- Basic Concept
- What can we leverage

The Big Picture

- Proposed Fast Synchronization occurs after power up and before link training
- Overall power up to link up goal within 100ms

Clause 28 Auto-Negotiation – The Bad and the Good

- 1000BASE-T1 is designed to operate without Clause 28 Auto-Negotiation used in 10/100/1000BASE-T
 - Closed system
 - Single pair
- Clause 28 Auto-Negotiation is slow
 - Designed to be backwards compatible to 10BASE-T long pulse spacing
 - Loose link down time (break_link_timer 1.2 to 1.5 seconds)
 - Slow link up time (link_fail_inhibit_timer 0.75 to 1.0 seconds)
 - Legacy (autoneg_wait_timer 0.5 to 1.0 seconds)
- But Auto-Negotiation gives a standardized mechanism to restart link training in case PHYs cannot link up on initial attempt
 - Timeout after 0.75 to 1.0 seconds if link cannot be established by that time
 - Establishes a common timeout start time
 - Escape path from lock up due to any reason
 - Eliminates incompatible vendor dependent re-try implementation

Need For Startup Synchronization

- 1000BASE-T and 10GBASE-T PHYs occasionally require multiple attempts at link training due to link not coming up on the first attempt
- Clause 28 Auto-Negotiation provides common timeout timer
- 1000BASE-T1 dual-duplex architecture similar to 1000BASE-T and 10GBASE-T
 - Hence will run into similar link training issues
- Need fast synchronization mechanism for 1000BASE-T1 to implement common timeout timer

Exchanged Signals

- Should be meaningful to differentiate from noise
- Easy to detect without need for DSP
- Exchange should terminate deterministically so timeout timers in both PHYs start at approximately the same time
- Tolerant to Noise
- Fast
- So what mechanism has the above properties

7

Leverage Clause 73 Auto-Negotiation for Backplanes

- Backplane Auto-Negotiation has all the desired properties

 - Exchange should terminate deterministically so timeout timers in both PHYs start at approximately the same time → State Machine

 - Fast → 1000's times faster than Clause 28
- Need to change timer values for single twisted pair
 - Under 0.8 ms to sync up before DSP training
- Need to change electrical signaling levels for twisted pair
 - Transmit use 1000BASE-T1 transmitter
 - Receive Simple comparators
 - Actual electricals TBD Will make compatible to 1000BASE-T1 levels

What's new – Making this work on one pair instead of 2 pairs

General Concept Over Single Pair

- PHYs take turns sending and receiving signals from each other
- Blind period to avoid seeing echo from self
- After signal received Wait (Silent) period needed since link partner may be in Blind period
- Wait period slightly longer than Blind Period
- Examples below with max cable length and zero cable length

Signal Separation on Startup

- Both transmit overlap and no signal seen receive times out
- PHYs will randomly decide whether to delay zero or more additional Wait periods while still keeping receiver on
 - Assuming 16 possible delay settings 1 in 1 trillion chance of going beyond 10 tries
- PHY that waits more should receive signal and should sync up system and no more random waits are needed
- At startup PHY should always listen for one Wait period before transmitting anything

BTW - Information Can Be Exchanged While Syncing

Simplifies Configuration

 No need to track all the configuration permutations (Switch to End node, vs Switch to Switch, EEE capabilities, this model car to that model device, etc.)

Easier Field Servicing / Upgrades

- Configuration smarts built into device
- Field technician does not have to do manual configuration (minimizes mistakes)
- Plug and Play

Future Proof

- Current devices don't need to know future capabilities
- Flexibility in future PHYs with higher speed capabilities

Proven Concept in Ethernet

Half Duplex Differential Manchester Encoded Signaling

Clause 73 Differential Manchester Encoding But not continuously transmitted (half duplex) Clock transitions DC balanced, Partially Randomized Bits bounded by delimiters First bit on wire 40 ns transitions Data -0 Encoding - D0 (Clause 73 is 3.2 ns transitions) D1 D2 80 ns per bit Transition positions 1 2 3 5 6 7 4560 ns per page -(1000's times faster than clause 28) Missing bit cell edge transitions to produce violations -End of page--> → Start of page-**←**T2**→** →T3 ← <-Quiet-→ I ← Quiet → -T6 -T6-Start delimiter End delimiter

What Changes Are Needed

- Start with 802.3ap Clause 73 Auto-Negotiation
- Adapt DME mechanism to copper media
- Small modifications to existing Arbitration, Transmit, and Receive State machines and timer changes.
- Add new state machine to control half duplex over single pair
- Additional tweaks possible to speed up
 - Eliminate Master/Slave collision
 - Reduce number of redundant pages sent
- 1000BASE-T1 PCS and PMA specification must define fast link down detection
- State Machine details to be released in future presentation.

Proposal

- Require a synchronization mechanism to be run prior to link training to implement common timeout timer for 1000BASE-T1
- Start an ad hoc group to study modifying Clause 73 Auto-Negotiation for use as synchronization mechanism

Benefits

- Synchronize PHYs for predictable timeout to break lockup conditions
- Allows exchange of information prior to link training
- Simplifies configuration, field upgrades
- Future proofing
- Based on proven Ethernet concepts

THANK YOU

BACKUP

IEEE 802.3bp RTPGE – March 2014 Plenary Meeting

16

Startup Times With Proposed Values

- break_link_timer proposed 100 us
- Startup retry resolution per attempt worst case wait
 - DME page + Blind period + receive time out + Wait period =
 4.56 us + 2.0 us + 6.8 us + 15 * 2.16 us = 45.76 us
- Once in sync each pair of pages takes
 - 2 x (Wait period + DME page + propagation) = 2 x (2.16 us + 4.56 us + 1.0 us) = 15.44 us
- Base page exchange
 - 3 in Ability Detect, 3 in Acknowledge Detect, 6 in Complete Acknowledge
 = (3 + 3 + 6) * 15.44us = 185.28 us
- DSP linkup time
 - RTPGE Group to define based on modulation scheme and PCS
- Total time not counting DSP link up time
 - No retry 100 us + 185.28 us < 300 us</p>
 - 10 retry 100 us + 10 x 45.76 us + 185.28 us < 750 us</p>

