

Marvell. Moving Forward Faster

Link Retry Study for 1000BASE-T1

IEEE 802.3bp - Interim Meeting - May 2014

William Lo, Marvell

1

IEEE 802.3bp RTPGE – May 2014 Interim Meeting

Supporters

- Albert Kuo Realtek
- Benson Huang Realtek
- George Zimmerman CME Consulting
- Stefan Buntz Daimler
- Tom Brown Vitesse
- Xiaofeng Wang Qualcomm

2

Question to be answered

Do we need a standardized mechanism to synchronize the PHYs in cases where multiple link attempts are necessary to bring up the PHYs?

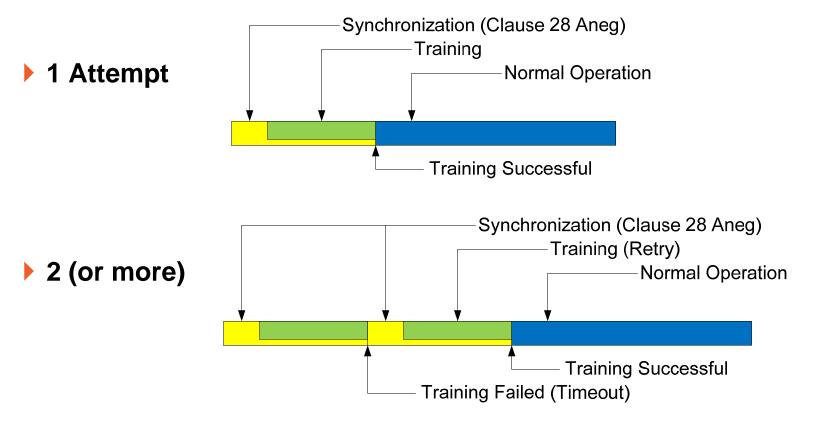
Agenda

- Comparison of 1000BASE-T1 vs. 10GBASE-T and 1000BASE-T
- 10GBASE-T Link Retry Experimental Results
- Next Steps

1000BASE-T1 vs. 10GBASE-T and 1000BASE-T

	1000BASE-T1	10GBASE-T	1000BASE-T	
Baud Rate	700ish MHz	800 MHz	125 MHz	
PAM	3	16	5	
Training PAM	TBD 2 or 3	2	3	
Time for Training	< 100 ms	2000 ms	750 ms	
Channels	1	4	4	
TX shaping	??? TBD	PBO/THP	Partial Response	
Echo	Yes	Yes	Yes	
NEXT/FEXT	No	Yes	Yes	
ANEXT	Yes	Yes	Yes	
	AWGN, NBI,			
Noise Sources	Burst	AWGN	AWGN	
Max Distance	15 m	100 m	100 m	

- 1000BASE-T1 is close to single channel 10GBASE-T
- 1000BASE-T1 operates in a noisier environment


Link Retry Study - Setup

- 4 pairs of 10GBASE-T PHYs from 4 different PHY manufacturers
- PHYs commonly available for sale in market
- Link all 4 x 4 combinations of master/slave
- Statistics collected on 10000 of link ups for each combination
- Did <u>NOT</u> stress the channel
- 8 meter cable single cable, no patch cord
- Quiet environment no ANEXT or injected noise sources

Link Retry Study – What we are measuring

More than 1 attempt / Total linkups

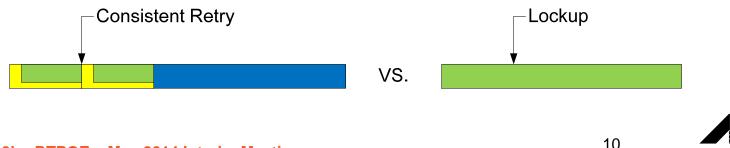
10GBASE-T Link Retry Study - % Retry

		Slave				
	Vendor	А	В	С	D	
Master	А	0.0%	0.0%	0.08%	0.0%	
	В	0.0%	0.9%	0.10%	1.0%	
	С	0.05%	0.0%	0.16%	0.15%	
	D	0.02%	1.2%	0.17%	0.0%	

- All PHYs needed multiple attempts with at least two other company's PHYs
- Numbers worse at longer cable lengths

Other Considerations

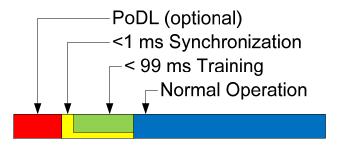
- Clause 28 Auto-Negotiation is the standard mechanism to trigger link training retry
- Each failed link attempt had 2.0 to 2.25 seconds of training time before Auto-Negotiation timed out
 - 1000BASE-T1 needs to link in under 100ms
- Statistics do not show reason for failed link
 - Stuck due to PAM 2 training
 - Stuck due to PAM 2 to PAM 16 transition
 - Lock up for other reasons



Question for the Task Force

Do we need a standardized synchronization mechanism for 1000BASE-T1?

- Clause 28 timeout not in 1000BASE-T1
- No standardized mechanism
 → interoperability issues during retry attempts, or lockups



Questions for the Task Force

- If a standardized synchronization mechanism for 1000BASE-T1 is needed then should we
 - A) Leverage and modify existing IEEE standards or
 - B) Invent something new

Is Clause 73 Auto-Negotiation an acceptable starting point to leverage existing standards?

- Ims synchronization time
- Beijing presentations :
 - Lo_3bp_03_0314.pdf,
 - Lo_3bp_04_0314.pdf

THANK YOU

IEEE 802.3bp RTPGE – May 2014 Interim Meeting

12