Sine Wave Interference Tolerance of RTPGE vs. TX launch Voltage

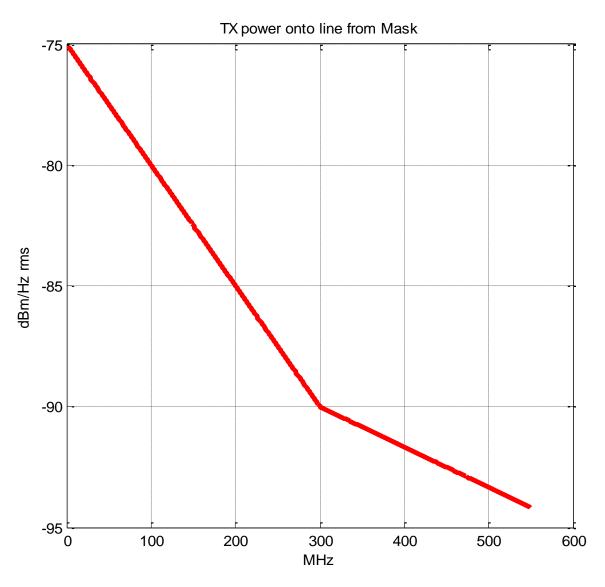
Will Bliss, Broadcom Corp.

IEEE P802.3bp RTPGE Task Force Dallas, TX Nov. 5 2013

W. Bliss, IEEE 802.3bp RTPGE Task Force Nov, 2013

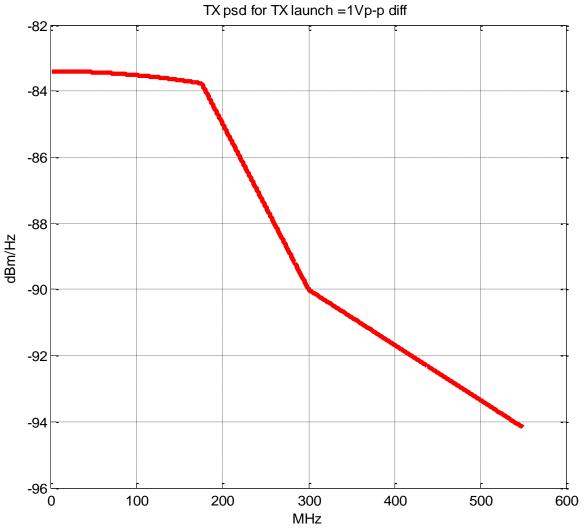
Overview

- Evaluate the tolerance to sine wave interference at the RX input
- Assume PAM-2 modulation
- Assume 10% overhead for coding (transcoding and FEC)
- Use the latest proposed TX PSD mask
- Use the latest four connector cable IL limit line model
- Assume all filters and DFE RX with unlimited taps
- Consider using lower TX launch Voltage and calculate the reduction in sine wave tolerance
- Apply a simple RX power model to create 'power cost' vs. 'sine wave tolerance' tradeoff
- Recommended target tolerance


EMC model for RTPGE w/ PAM & DFE

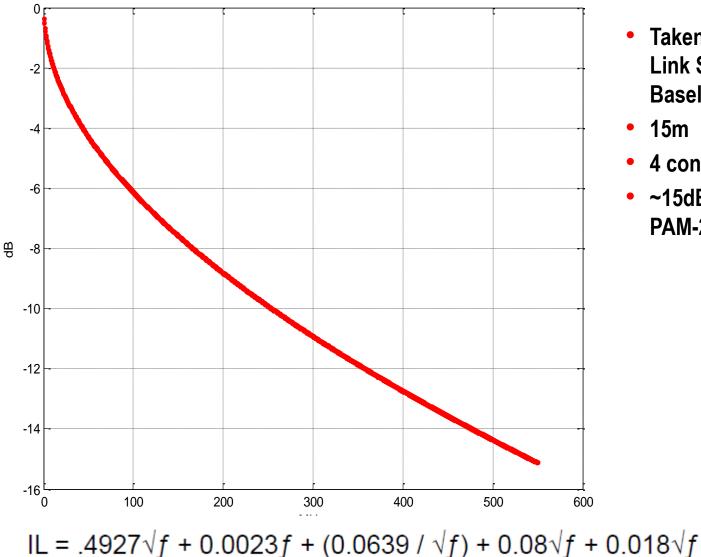
- The transmitter must be limited by LPF H_TX(f) such that the emissions *e(k)* meet the criteria set by the industry and regulation. In other words, the signal at *b(k)* must meet the TX PSD mask
- Further, we consider here cases where the maximum peak to peak Voltage at b(k) is limited by necessity or choice of TX design
- The transmit signal is further low passed by the Insertion Loss of the cabling and connectors, H_IL(f)
- Assuming n(k) is 'white' and the SNR(f) is nowhere low, H_ffe(f) will be all-pass, creating a minimum phase signal at w(k)
- Solve for the minimum amplitude sine wave at *n*(*k*) that creates slicer errors (with no other noises or non-idealities)

W. Bliss, IEEE 802.3bp RTPGE Task Force Nov, 2013


Updated TX PSD Mask

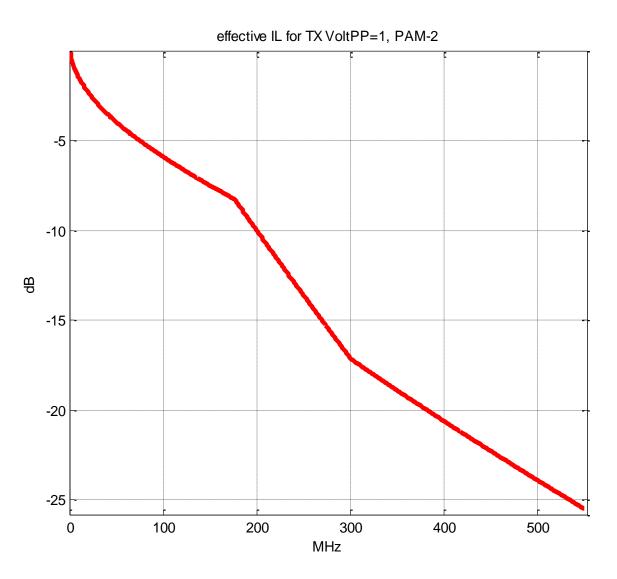
- From [Tazebay_3bp_01_0626 13]
- Here shown out to the Nyquist frequency for PAM-2 with 10% overhead, = 550MHz

W. Bliss, IEEE 802.3bp RTPGE Task Force Nov, 2013

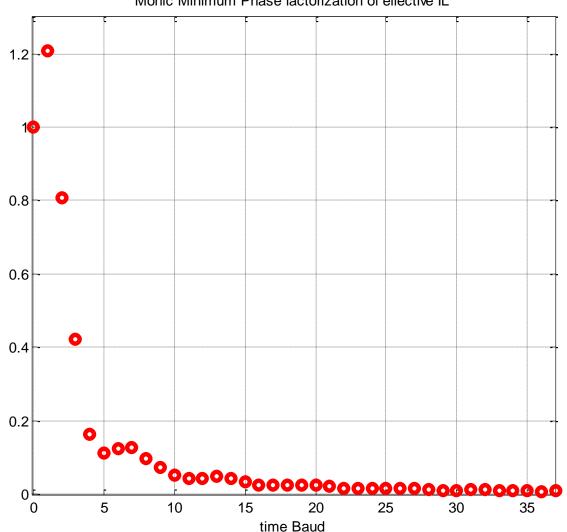

Modified TX PSD Mask, e.g. 1Vp-p

- Modified TX PSDs meets both the original TX PSD mask AND meets a maximum peak Voltage launched onto the line,
- The example shown is for limiting the TX to 1Volt peak to peak differential launched onto the line
- The peak voltage max limits the PSD below 180 MHz
- The assumption of Baud rate signaling creates the sin(f)/f shape at low frequencies
- For this 1Vpp example, the dynamic range is reduced from 19dB to 10dB

Insertion Loss

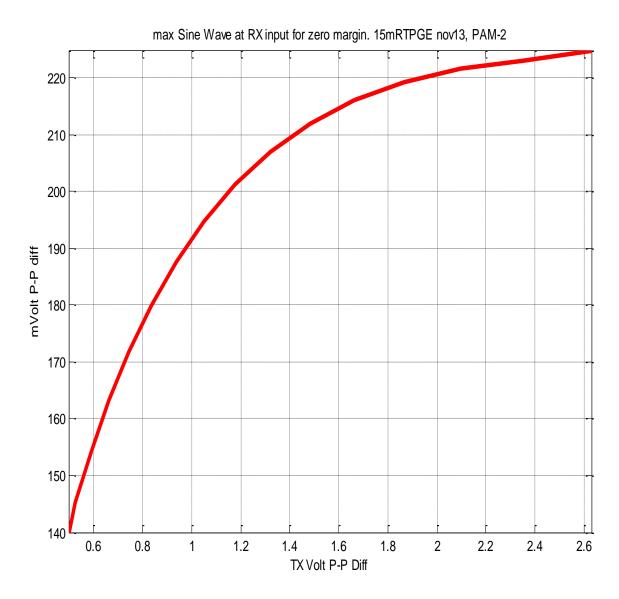

IL RTPGE 15m nov13

- Taken from 802.3bp • Link Segment Baseline-0.2.pdf
- 15m
- 4 connector
- ~15dB IL @ Nyquist for PAM-2


W. Bliss, IEEE 802.3bp RTPGE Task Force Nov, 2013

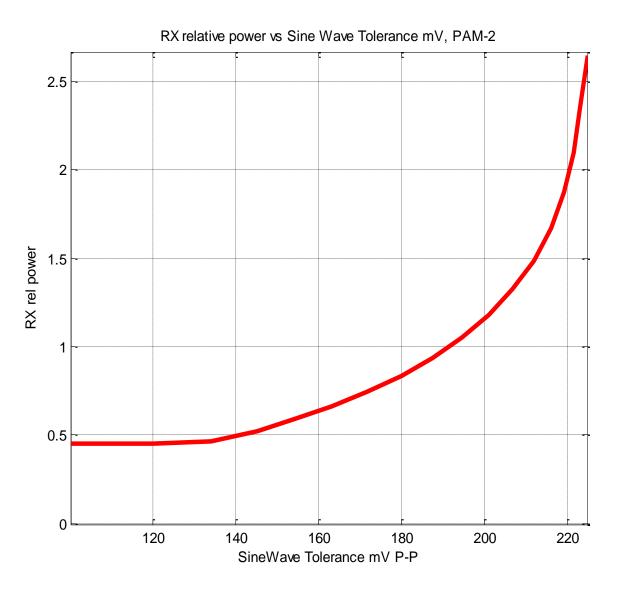
'Effective IL', e.g. 1Vpp

- The constraint of 1Vpp TX launch voltage reduces the dynamic range of the 'effective IL' seen by the RX from 34dB to 25dB
- This reduces the implementation power of the TX, and we'll look at the reduction in RX implementation power as well


DFE Response for 1Vpp

Monic Minimum Phase factorization of effective IL

- DFE designed for white noise at the RX input with moderately high SNR(f)
- **Example shown for 1Vpp max TX launch** voltage
- The monic term h(0)=1is dropped from the actual feedback circuit
- This response is consistent with that of channels with ~25dB IL


Sine Wave Tolerance vs. TX Vpp

- The slope of the sine wave amplitude tolerated vs. the max TX
 Voltage Peak to Peak is low at the maximum of ~2.6 Volts
- E.g., only reduces from 225 to 192 mV going from 2.6 to 1 Volt P-P

W. Bliss, IEEE 802.3bp RTPGE Task Force Nov, 2013

RX relative power vs. Sine wave tolerance

- A simple model of the relative RX power cost is;
- Every 6dB of added dynamic range doubles the power
- Taken from standard ADC design Figure of Merit
- At low tolerance levels the TX PSD mask has been replaced by sinc(f), so no power reductions
- E.g., probably want to be not much more than double the 'minimum', so around 190mV from 1Vpp TX,

Budget for 'other Noises'

- So far we've included no other noises and /or mis-equalizations, etc.
- A practical budget must include these items
- Consider a 'base design' that just meets the BER target (w/o FEC) w/o any Sine Wave interference
- Claimed here (w/o demonstration here) that Alien cross talk is low enough to ignore in the following;
- If we lower the RX noise floor by 6dB, we will now tolerate Sine Wave interference exactly one-half of the 'bound values' previously plotted
 - So e.g., for 1Vpp, the 192mV bound is made to a real 96mVpp tolerance
 - This takes another doubling of 'relative RX power'
- E.g., another 6dB reduction in implementation noises (at another doubling of power) would achieve three-fourths of the sine wave tolerance plotted

So e.g., for 1Vpp, the 192mV bound is made to a real 144mVpp

- This author expects that ~100mV pp sine wave tolerance is probably near the maximum tolerance that the market will deign to 'purchase'
- Is 100mV pp enough tolerance?

Conclusions and Future Work

- The latest IL limit line and TX PSD mask limitations were used
- A range of TXs with limited max peak to peak drive Voltage was considered for possible cost reduction, and sine wave tolerance was solved for these
- There is relatively small ~15% loss in sine wave tolerance from dropping the TX drive from 2.6Vpp down to 1Vpp
- A 'relative RX power' model was introduced, and showed a 62% reduction in power from the 15% reduction in tolerance
- Practical design parameters can achieve 100mVpp sine wave tolerance
- Group needs to decide 'how much tolerance is enough', and 'how much power cost' that protection is worth.
- If going ahead with this PAM-2 technique, need a TX PSD 'window' with upper and lower limit lines

Thank you

W. Bliss, IEEE 802.3bp RTPGE Task Force Nov, 2013