

Auto-Negotiation Baseline Proposal

IEEE 802.3bp – Plenary – November 2014

Brett McClellan, Marvell

1

IEEE 802.3bp RTPGE – November 2014 Plenary Meeting

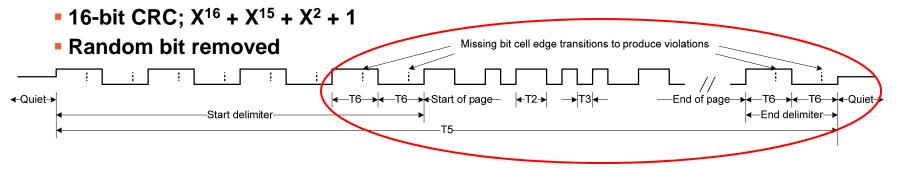
Agenda

- General points of agreement
- Updates
- Open issues
- Baseline Proposal
- Performance simulation results
- Next steps

What occurred thus far

March 2014 - Details of single pair auto-negotiations presented

- Lo_3bp_03_0314.pdf
- Lo_3bp_04_0314.pdf
- May 2014 Improvements on above
 - Thaler_01_0514.pdf
- May 2014 Added auto-negotiation to 1000BASE-T1 objectives
 Lo_Thaler_Tazebay_01_0514.pdf
- June 2014 Offline discussions
- July 2014 Additional work state machines presented
 Lo_3bp_02a_0714.pdf
- September 2014 Additional work DME performance
 - McClellan_Lo_3bp_01_0914.pdf


Agreed items in June discussions

Use Clause 73 as starting point – ok

- Lo_3bp_04_0314.pdf
- Half duplex concept for auto-negotiations ok

Circled portion of page below agree upon

- 64-bit page
- 48-bit data

Agreed items in June discussions

- Starting polarity will be randomized instead of using random bit
- Base period T3 will be 8ns if 750MHz baud rate selected
- Delimiter T6 will be 3 T3 periods instead of 4 T3 periods
- Single CRC match instead of 3 matching pages
 - ability_match and acknowledge_match redefined

Agreed items in June discussions

Most bits of base DME page defined

- D[4:0] = S[4:0] = 00001 IEEE 802.3
- D[9:5] = E[4:0] = Echoed Nonce
- D[13] RF
- D[14] Ack
- D[15] Next page
- D[20:16] = T[4:0] = Transmitted Nonce
- D[47:21] = TBD Ability fields
- D[63:48] = CRC16

Receive state machine can be optimized not to waste first received page

Silence limits of +/- 50mV

July update

Complete half duplex autoneg state machines

- Transmit see correction on next slide
- Receive
- Half Duplex
- Arbitration

Improved collision resolution time

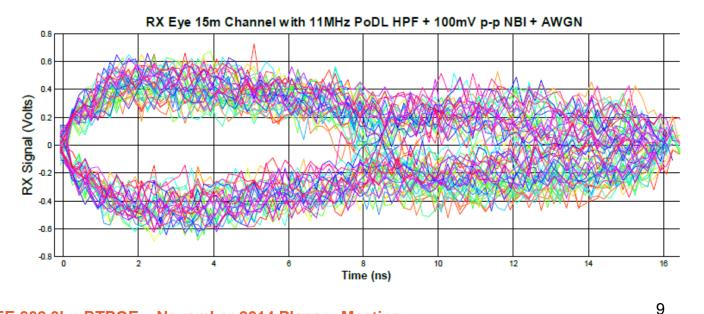
September update

Updated Transmit state machine

- Differentiated start and end delimiters
- Incorporated CRC16
- Randomized starting polarity
- D[24:21] Ability Field
 - D[21] reserve for 1TCPE
 - D[22] reserve for 1TCPE EEE
 - D[23] 1000BASE-T1
 - D[24] 1000BASE-T1 EEE

DME performance simulations

Open Issues in September


tu_3bp_01a_0914

T3 selection

- -T3 = 8ns is not suitable for 100BASE-T1 AFE.
- -100BASE-T1 PHY requires T3 >= 15 ns due to AFE baud rate = 66.6MHz.

PoDL HPF introduces droop into the DME response

-Closes the eye of the data transition period (half symbol)

IEEE 802.3bp RTPGE – November 2014 Plenary Meeting

Why Differential Manchester Encoding?

Manchester is a DC free code

- Ideal for high pass / band pass channels
- 2 fundamental frequencies: F and F/2

Auto channel is a band pass channel

- PoDL high pass at 1MHz to 10Mhz
- 100BASE-T1 receiver low pass around 33MHz

Differential Manchester

- Polarity insensitive
- Simple and robust decoding

Differential Manchester Decoding

Level detection at the data half period

- Compare to clock half period: change -> bit = 1
- Suffers heavily due to droop from 10MHz HPF
- Data eye closes due to droop
- Level detection at the clock half period
 - Compare to previous clock half period: change -> bit = 0
 - Suffers little due to droop from 10MHz HPF
 - Clock period eye stays open
- Edge Detection
 - Subtract the data amplitude from the clock amplitude analog or digital
 - Improves immunity to noise
- Matched filter
 - Oversampled detection
 - Improves immunity to noise and NBI

Baseline Proposal

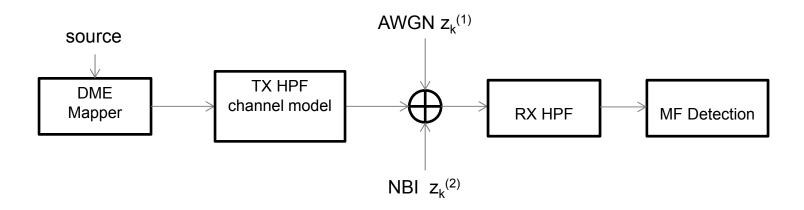
See submitted draft text: mcclellan_3bp_03_1114

- Set T2 as a common clock to 100M and 1G
 - T3 = 30ns
 - T2 (DME period) = 60ns (16 2/3 MHz)
 - -100BASE-T1 clock \div 4
 - -1000BASE-T1 clock \div 45
- T2 is within the pass band of 100M and 1G
 - 16 2/3 MHz
 - -Above the 1MHz and 10MHz HPF for PoDL
 - -Below the ~33 MHz bandwidth of 100M

New start delimiter

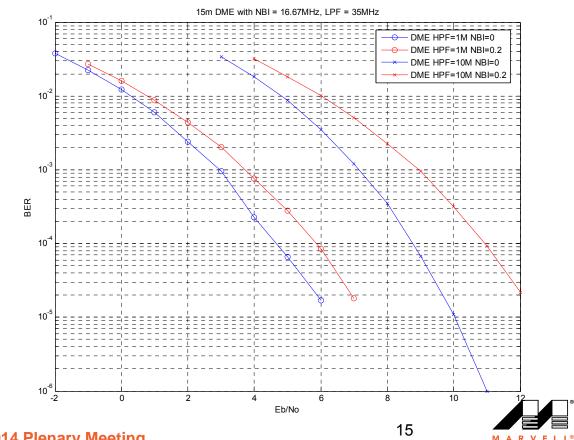
32 * T3 PRBS sync pattern includes DME violations

- -High frequency pattern pass through 10MHz HPF for 1G
- -Low frequency DME violation easily detected


DME Performance

Channel impairments

- PoDL DC and low frequency noise, blocked by 10MHz High Pass network
 - HPF filter attenuates low frequency and distorts the pulse response
- AWGN multiple broadband noise sources such as thermal noise
- Inter-symbol interference (ISI) introduced by the channel, e.g. 15m UTP
- Narrow Band Interferers (NBI)
 - Worst performance when NBI matches the baud rate


Simulation Model

- No equalizer
- AWGN $z_k^{(1)} \sim N(0, \sigma^2)$ • $P_{AWGN} = 10 \log_{10}(\sigma^2/(2/3))$ (dB)
- ► NBI $z_k^{(2)}$ =Acos(2 π (F_c/F_s)k+p₀) • P_{NBI} =10log₁₀(A²/2) (dB)

16 2/3 MHz (T3=30ns) DME BER vs. impairments, 15m

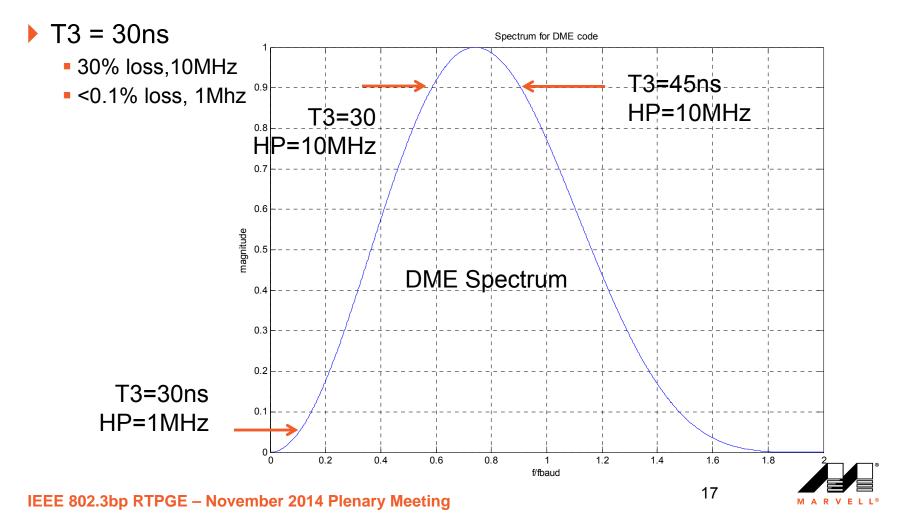
- Robust BER performance in presence of impairments
 - Acceptable loss due to the HPF network
 - performs well under NBI
- BER shown for 15m channel, NBI = 16 2/3 MHz at 0 & 0.2 Vpk

IEEE 802.3bp RTPGE – November 2014 Plenary Meeting

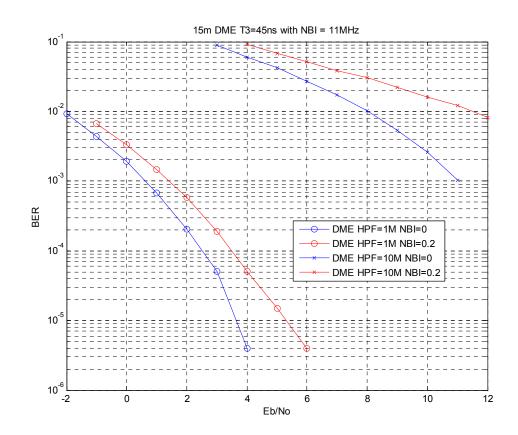
T3 = 45ns vs T3 = 30ns

► T3 = 45ns -> DME frequency = 11.1MHz

- Most of the signal is attenuated more than 6dB by the high pass
 More sensitive to AWGN and narrow band interference
- Requires 1000BASE-T1 to generate a new clock frequency
- Can't transmit DME signal from 750 MHz based clock


► T3 = 30ns -> DME frequency = 16.7MHz

- Fundamental frequency above the high pass
- Can transmit symmetric DME signal using a 3-levels @ 750Mhz


Spectrum Loss vs T3 and High Pass Filter

▶ For T3 = 45ns, 65% of the energy falls below the 10MHz high pass.

11.1MHz (T3=45ns) DME BER vs. impairments, 15m

- Serious degradation due to high pass attenuation of the DME signal
 - Sensitive to AWGN and narrow band interferer
- BER shown for 15m channel, NBI = 11MHz at 0 & 0.2 Vpk

Next Steps

- Adopt proposed text as auto-negotiation baseline with the understanding that additional changes will be needed once tentative items firm up
- Start work in the ad hoc and build simulations based on adopted baseline to root out hidden issues and refine specification

Marvell. Moving Forward Faster

THANK YOU

IEEE 802.3bp RTPGE – November 2014 Plenary Meeting

