Improvements on DME-based Autoneg Signaling

San Antonio, TX, USA November 4, 2014

Mike Tu tum@broadcom.com

Contributors

- Jay Cordaro
- Ahmad Chini

Outline of presentation

- Previous Results
 - T3=8nsec
 - Comparator based detector
 - Preamble is 8 T6 symbols
 - Poor performance with PoDL HPF (see "tu_3bp_01a_0914")
 - Not compatible with 100BASE-T1 ADC
- Proposed Improvements for DME autonegotiation signaling
 - Optimizing T3 for 100BASE-T1 and 1000BASE-T1
 - Better preamble
 - Improved detector
- Performance Results
- Conclusion

IMPROVEMENT #1: OPTIMIZING T3 FOR 100BASE-T1 AND 1000BASE-T1

Choosing T3

Т3	100BASE-T1 max Fs=66.67MHz	1000BASE-T1 Max Fs=750MHz	
8nsec	Not compatible	6x oversample, Fs=750MHz	
15nsec	Fs=66.67MHz	3x oversample, Fs=200MHz	
30nsec	2x oversample, Fs=66.67MHz	6x oversample, Fs=200MHz	
45nsec	3x oversample, Fs=66.67MHz	9x oversample, Fs=200MHz	
60nsec	4x oversample, Fs=66.67MHz	Severe droop with PoDL	

45nsec T3 offers 3x oversampling with 66.67MHz sampling rate for 100BASE-T1 receiver

BES

IMPROVEMENT #2: BETTER PREAMBLE

Received Waveform: Preamble = 8 T6

- How to Synchronize with this?
- Too much signal droop due to PoDL HPF
- Clearly, an improved preamble is required

Golay Sequences

- Golay sequences were proposed in 1961 [1] and have a number of interesting properties
 - Golay sequences have good aperiodic autocorrelation properties
 - Golay-26 is only 2 T3 longer than current 24xT3 preamble.

1. M. J. E. Golay, "Complementary Series", *IRE Transactions on Information Theory*, Vol 7, No. 2 (1961)

Proposed Preamble Sequence

Note: maximum sub-run length is 4

Autocorrelation: Golay-26 vs. PN-31

- Simulation setup: HPF=11MHz, 400mVpp CW, random CW phase
- → Golay-26 has better performance than PN-31.

IMPROVEMENT #3: IMPROVED DETECTOR

Receiver Block Diagram

Page 12

SIMULATION RESULTS

Simulation Setup

- 15m Channel model
- 1Vpp TX Amplitude
- 24dB SNR AWGN at RX
- T3 = 30 vs. 45 nsec
- Packet:
 - Golay-26 Preamble
 - Random Payload
 - CRC-16
 - T6
- 1st order HPF
- PoDL HPF corner frequencies
 - 1MHz HPF
 - 11MHz HPF

- Random phase offset for DME
- Sweep CW Frequency
- Random CW phases

RX Signal: T3=30nsec

RX Eye Diagram: T3=30nsec

- Eye is narrower due to only 2x oversampling, unable to sample at optimal phase.
- Noise shown = 10MHz CW NBI @ 180mVpp + 24dB SNR AWGN

RX Signal: T3=45nsec

RX Eye Diagram: T3=45nsec

- Wider eye opening due to 3x oversampling.
- Noise shown = 11.11MHz CW NBI @ 250mVpp + 24dB SNR AWGN

Simulation Results with T3=30nsec

	1MHz HPF	11MHz HPF
NBI Sweep Range	1-66MHz	11-200MHz
NBI Tolerance	180mVpp	250mVpp

Simulation Results with T3=45nsec

	1MHz HPF	11MHz HPF
NBI Sweep Range	1-66MHz	11-200MHz
NBI Tolerance	250mVpp	300mVpp

• Over 200mVpp CW NBI tolerance

Conclusion

- Change T3 from 8nsec to 45nsec to allow interoperability and speed negotiation between 100BASE-T1 and 1000BASE-T1.
- Replace preamble from 8 T6 to Golay-26 preamble.
- NOTE: Increasing T3 from 8nsec to 45nsec will increase the expected auto-negotiation time by 5.6x which will take away from 100ms start-up time.