Update on 1000BASE-T1 EEE: LPI-FEC Interaction

Kanata, ON, Canada September 8, 2014

Jim Graba

jgraba@broadcom.com

Contributors

- Ahmad Chini
- Mehmet Tazebay
- Mike Tu
- Peiqing Wang

Overview

- LPI Refresh
- Synchronize LPI with FEC Frames
- Exiting LPI
- LPI Exit Latency
- LPI Parameter Choices
- Conclusions

LPI Refresh

- 10G EEE
 - LPI Refresh is composed of THP encoded PAM2 => Refresh signal power
 = Data signal power
 - PAM2 generated by 33 bit training scrambler
 - Able to use known data in the Refresh
- 1000BASE-T1 Refreshes should be composed of PAM3 instead of PAM2
 - Keeps data and Refresh and signal power equal
 - Resynchronization at LPI exit is easier
 - Can still use known data in the Refresh
- Use the data transmit channel for LPI mode
 - Keep the RS cadence constant regardless of enter/exit LPI times

Refresh Composition

- The parity bits in the RS(450, 405) are 1/10 the length of the code word
 Let the partial frames = 1/10 of the code word length => PF = 10
- Now the Refreshes can be aligned to the RS frame such that each Refresh can contain data and parity bits

RS frames and LPI state machine must be synchronized at link up.

Exiting LPI Mode

- Alert
 - Occupy D0-D1
 - 720ns
 - Alert composition TBD
- If sending an Alert then send the rest of the RS frame
 - Enough data to synchronize the scrambler

LPI Exit Latency

T_{LPI} <= 2*T_{AlgLat} = 10.8us
 – Increase in latency due to LPI

LPI Parameter Choices

Symbol	Definition	Proposal	Lo: 20140813	
RS3	# PAM3 symbols per RS frame	2700	2700	
RXT	Duration of RS frame (ns)	3600	3600	
PRS3	# PAM3 symbols per partial RS frame	270	180	
PRST	Duration of partial RS frame (ns)	360	240	
PF	# partial frames per RS frame	10	15	
QRF	# RS frame per Quiet Refresh cycle	23	30	
QRT	Duration of quiet refresh cycle (ns)	82800	108000	
AF	# partial RS frames separating alert	10	17	
AlertGran.T	Alert Granularity (ns)	3600	4080	
Refresh_LPI	# partial RS frames for refresh	4	6	
Refresh_T	Duration for refresh (ns)	1440	1440	
QR_Ratio	Quiet/Refresh Ratio	57.5	75	
Enter_LPI_RS	# RS frames with all LPI to enter LPI	1	2	
Alert_LPI	# alert sequences to exit LPI	2	3	
Alert_LPIT	Alert time (ns)	720	720	
Exit_LPI_RS	# RS frames with all idles upon exit LPI	1	1	
Alert_sym	# symbols in alert sequence	540	540	
ersion 1.0	IEEE 802.3bp Task Force Sept 8. 2	2014		Page

Conclusions

- Synchronize Reed Solomon frames to LPI timing
- Reduce Quiet/Refresh cycle length
- Place Alert at the beginning of the RS frame