Update on 1000BASE-T1 RS Forward Error Correction

Kanata, ON, Canada

$$
\text { September 8, } 2014
$$

BZ Shen, Mehmet Tazebay, Mike Tu
Broadcom Corporation

FEC for 1000BASE-T1

- Baseline proposal in July meeting
-3B2T mapping [adopted]
-Baud rate 750 MHz 9 -bit Reed-Solomon (450,406,t=22) code
- Content in this contribution
-Finite field $G F\left(2^{9}\right)$ description
-Reed-Solomon code description

Generator polynomials of $\mathrm{GF}\left(\mathbf{2}^{9}\right)$ and $\mathrm{RS}(450.406)$ code

- Field GF($\left.2^{9}\right)$
- Primitive generator polynomial: $p(x)=x^{9}+x^{7}+x^{5}+x+1$
- $G F\left(2^{9}\right)=\{f(x) \bmod p(x) \mid f(x)$ is binary polynomial of degree $<9\}$
- Primitive element: $\alpha=02$ (in octal)
- $\mathrm{GF}\left(2^{9}\right)=\left\{0,1, \alpha^{1}, \alpha^{2} \ldots, \alpha^{510}\right\}$
- $(450,406)$ RS code
- Generator polynomial: $g(x)=\left(x-\alpha^{0}\right)\left(x-\alpha^{1}\right) \ldots\left(x-\alpha^{43}\right)$

Reasons on the field generator

- Allow a low complexity inverse and fast field modification
- 3 -bit field $\mathrm{GF}\left(2^{3}\right)$ as a sub-field of $\mathrm{GF}\left(2^{9}\right)$
- Primitive generator polynomial $p_{3}(x)=x^{3}+x+1$, which is the minimal polynomial of $\lambda=\alpha^{73}$ in GF(23)
- GF(2^{9}) as a composite field GF $\left(\left(2^{3}\right)^{3}\right)$ over GF($\left.2^{3}\right)$
- Generated by the polynomial $x^{3}+x+\lambda$

Proposals

- Adopt the following two generator polynomials
- Generator polynomial for $\operatorname{GF}\left(2^{9}\right): p(x)=x^{9}+x^{7}+x^{5}+x+1$
- Generator polynomial for RS $(450,406)$ code: $g(x)=\left(x-\alpha^{0}\right)\left(x-\alpha^{1}\right) \ldots\left(x-\alpha^{43}\right)$ with $\alpha=02$

