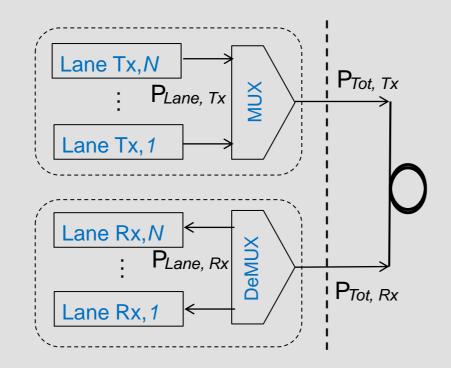
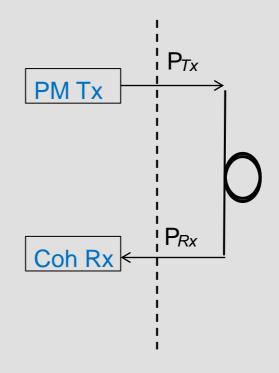
Technical Feasibility of Single Wavelength 400GbE 2km &10km application

IEEE 802.3bs 400GbE Task Force Interim Meeting, Norfolk, VA May 12 – 14, 2014

Fei Zhu, Yangjing Wen, Yanjun Zhu, Yusheng Bai Huawei US R&D Center Santa Clara, CA 95050




Content

- ☐ Technical Analysis of *N* x 56Gbaud Alternatives
- ☐ Impact of MPI & Modulation Formats
- ☐ Link Budget of 1 x 56Gbaud PM-16QAM
 - for 400GbE 2km & 10km
- Consideration of Components and DSP Algorithm
- Summary

N x 56Gbaud Alternatives for 400GbE 2km

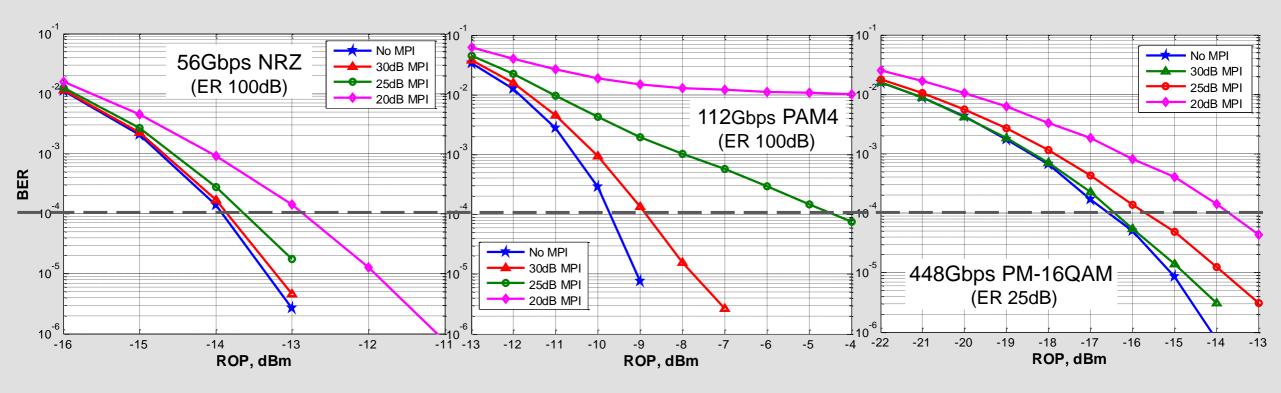
Modulation / Detection	400GbE Scheme	Rx Sensitivity per Lane (intrinsic)	Rx Sensitivity aggregated (extrinsic)
NRZ, IM-DD	8 x56 Gbps	X dBm	X + (9+3) dBm
PAM4, IM-DD	4 x112 Gbps	X+ 4.5 dBm	X+4.5 +(6+1.5) dBm
PM-16QAM, IQ -CohRx	1x 448 Gbps	X- 3 dBm	X-3 dBm

Impact of Rx sensitivity on 400GbE 2km Link budget

	8 x 56Gbps NRZ	4 x 112Gbps PAM4	1x 448Gbps PM-16QAM	
Max Rx Sensitivity per lane, P _{Lane, Rx} (@ BER of 1x10 ⁻⁴)	-13.8 dBm	-9.8 dBm	-16.6 dBm	
DeMUX IL	3 dB	1.5 dB	N/A	
Total Margin (for MPI, etc.)	2 dB	2 dB	2 dB	
SMF 2km Loss Budget	4 dB			
Min Tx Output Power into SMF per Lane	-4.8 dBm	-2.3 dBm	-10.6 dBm	
Min Tx Output Power into SMF Aggregated, P _{tot, Tx}	4.2 dBm	3.7 dBm	-10.6 dBm	
MUX IL	3 dB	1.5 dB	N/A	
Min Tx output power per Lane before MUX, P _{Lane, Tx}	-1.8 dBm	-0.8 dBm	-10.6 dBm	

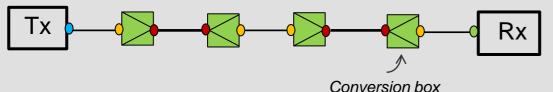
>Tx parameters:

- 3dB BW: 0.75xBaudrate;
- RIN: -145 dB/Hz;
- Linewidth: 0.7 MHz for NRZ & PAM4, 0.1 MHz for PM-16QAM;
- Ideal intensity modulation for NRZ & PAM4;
- I/Q modulator for PM-16QAM with 25 dB ER (Extinction Ratio)

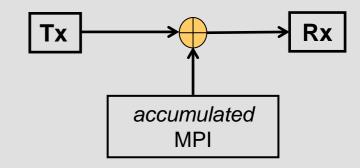

> Rx parameters:

- 3dB BW: 0.75 x Baudrate
- Responsibility: 0.85 A/W for NRZ & PAM4; 0.05 A/W for PM-16QAM (incld. ICR IL)
 - Receiver Noise: 30 pA/sqrt(Hz)

Components for Nx 56Gbaud Alternatives


	8 x 56Gbps NRZ	4 x 112Gbps PAM4	1x 448Gbps PM-16QAM	
Lasers	8 (DML?) (can DML still make it at 56Gbaud?)	4 (EML)	1 (shared LO) (Linewidth ~300kHz)	
Modulators	IM in DML or EML	IM in EMLs	PM-IQM	
Drivers	8 (limiting)	4 (linear)	4 (linear)	
Receivers & TIAs	8 (DD: single-ended pin w/ limiting TIA)	4 (DD: single-ended pins w/linear TIAs)	1 ICR (CohDet: Optical Hybrid, 4 balanced pins w/ linear TIAs)	
MUX & DeMUX optics	Yes (8:1 & 1:8) extra loss	Yes (4:1 & 1:4) extra loss	N/A	
DSP ASIC (/ASSP)	Not needed (sensitive to residual CD in 1310nm)	Needed (4 A/Ds + DSP) (more tolerant to BW limit, but still sensitive to residual CD in 1310nm)	Needed (4 A/Ds + DSP) (more tolerant to BW limit & residual CD in 1310nm)	
Scalability	?? (>8 lanes lead to large CD Penalty)	?? (more lanes more MUX/DeMUM IL)	Yes (readily scalable to 1.6TbE)	

Modulation Formats & Tolerance to MPI



MPI effects modeled as	MPI Power Penalty (@ BER of 1x10 ⁻⁴)			
incoherent Xtalk	56Gbps NRZ	112Gbps PAM4	448Gbps PM-16QAM	
-30 dB	0.1 dB	0.8 dB	0.2 dB	
-25 dB	0.3 dB	5.6 dB	1 dB	

Modeling MPI effect – 2km Link Configuration

- Tx reflectance: -12 dB
- LC to MPO connector reflectance: -26 dB
- MPO to MPO connector reflectance: APC (~ return loss)
- Rx reflectance: -26 dB

$$E(t) = E_S(t) + \sqrt{\varepsilon} E_{MPI}(t)$$

Modeling MPI effect:

- Dominated by the reflection between Tx and other connectors (LC to MPO) as well as Rx;
 - For dual trunk, max total MPI between Tx and other reflection points could be as high as -24dB;
 - Total MPI rms value between Tx and other reflection points, and RX could be ~ -30dB;
- Total MPI-induced Xtalk could be in the range of -24 ~ -30dB:
 - The MPI between Tx and the first connector (and also MPI between last connector and Rx) is likely coherent;
 - The MPI between other reflection points are likely incoherent; For 1MHz linewidth, the coherence length is 200m, which corresponds to 100m fiber due to the double pass of MPI;
- If there is a dirt connector, MPI could shot up. That's why simulation considers 20, 25, and 30dB cases

Why single wavelength coherent solution for 400GbE 2km & 10km PMD

High Receiver Sensitivity

```
~3dB better than NRZ;
```

~7.5dB better than PAM4;

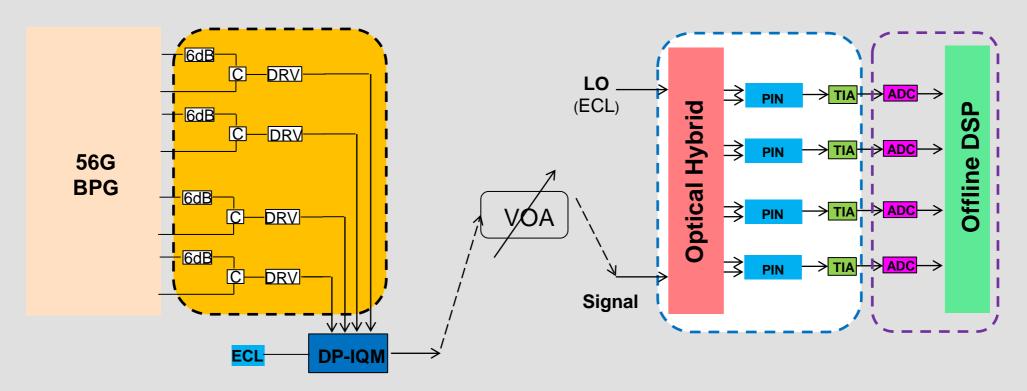
much less (>10dB less) optical power onto fiber connectors

More Tolerant to MPI

- slightly worse than NRZ, but much better than PAM4

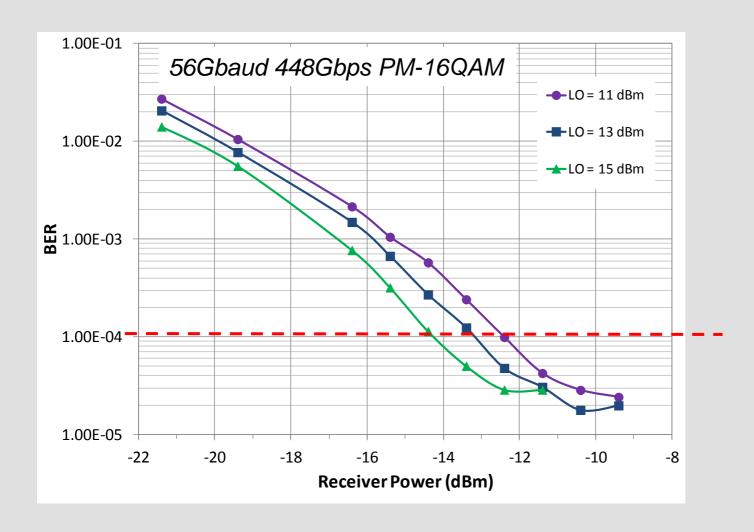
Scalable

```
1x 448Gbps for 400GbE
```


4x 448Gbps for 1.6 TbE in the future

1x448Gbps (56Gbaud) PM-16QAM 400GbE 2km &10km Link Budget Estimate

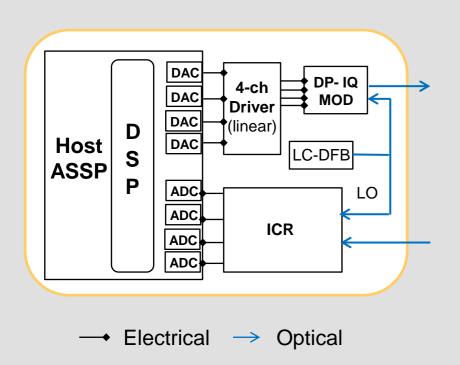
	56Gbaud PM-16QAM 400GbE 2km and 10km link budget estimate				
Operating spectral band: 1310 nm	SMF 2km (shared LO)	SMF 10km (shared LO)	SMF 10km (not shared)		
Laser output power	15 dBm	15 dBm	13 dBm		
available to Tx / LO	11.5 dBm	11.5 dBm	13 dBm		
PM-IQM IL + Modulation Loss	16 dB	16 dB	16 dB		
SMF Loss Budget	4 dB	6.3 dB	6.3 dB		
Receiving power (@ BER 1x10 ⁻⁴)	-8.5 dBm	-10.8 dBm	-9.3 dBm		
Min Rx Sensitivity, balanced PINs	-15.5 dBm (at LO power 11 dBm)	-15.5 dBm (at LO power 11 dBm)	-16.5 dBm (at LO power 13dBm)		
Total Margin	7 dB	4.7 dB	7.2 dB		
MPI penalty (@BER 1x10 ⁻⁴) (at MPI power -25dB)	1 dB	1 dB	1 dB		
Margin available for others*	6 dB	3.7 dB	6.2 dB		


^{*}Potential other penalties such as ASIC implementation, aging, etc.

Preliminary Testbed Verification – Lab Setup

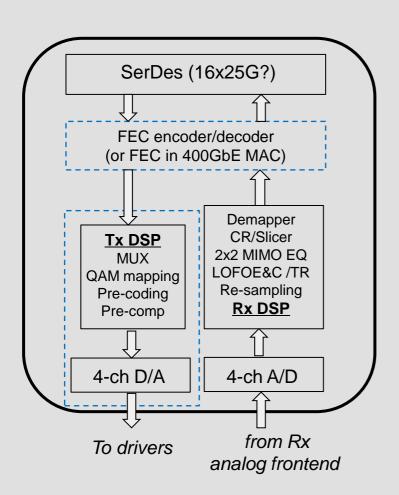
- Tx side: integrated PM-IQM (3dB BW 33GHz) with 4 SHF limiting driver (3dB BW 55GHz) were used in lab setup;
- Rx side: single-ended PINs were used in lab setup. Balanced PINs are preferred for ~3dB better receiver sensitivity;
- ADCs are located inside a 80 GS/s DSO. Offline DSP processing in floating –point was applied for lab verification. Digital
 compensation of driver nonlinear response is applied.

Preliminary Testbed Verification – Rx Sensitivity Results



- @ moderate LO power 11dBm, Min Rx sensitivity at BER of 1x10⁻⁴:
 - 12.5 dBm, single-ended PINs

Expected Rx sensitivity with balanced PINs should be 3dB better (*i.e.*, -15.5 dBm).


More powerful FEC would be preferred to ease the design requirement of DSP ASIC / ASSP.

Consideration of Components for 1x448Gbaud PM-16QAM for 400GbE Clients

Key O/E Components	Availability	Notes
LC (long cavity)- DFB laser (output 13~15dBm, linewidth 300kHz)	available	ECL (100kHz) is not necessary for 56Gbaud 16QAM
DP-IQM (3dB BW ~ 40 GHz)	Samples available	InP, SiP-based may be preferred for small size
Linear driver (3dB BW ~ 40 GHz)	under development	Linear drivers also needed for 56Gbaud PAM4
ICR (3dB BW ~ 35GHz)	under development	large BW balanced pins are available
High Speed A/D & D/A (ENOB>5bit, sampling > 75GSps)	under development	D/As are not necessary. But if used, Tx component specs (skew, BW) could be relaxed.
DSP ASIC / ASSP	to be specified & developed	Low power version can be designed from the current work for LH. May require some standards work to establish proper handshaking.

Consideration of DSP algorithm for 1x448 Gbps PM-16QAM for 400GbE 2km & 10km

Tx side:

- D/As are not necessary. A 16:8 gear box could be used instead and QAM symbols may be formed in analog domain, too; However
- Tx DSP plus DACs could be useful for pre-equalization, spectral shaping, and skew control, in order to relax Tx components specs;

Rx side:

- Since in1310nm, separate CD compensation block may not be needed;
 Residual CD could be compensated in MIMO FIR;
- •2x2 complex MIMO FIR is for polarization tracking and demultiplexing;
- While polarization separation can be done blindly using constrained CMA, training would be needed to resolve phase ambiguity;
- One way to avoid training is to use differential pre-coding, and pay a differential pre-coding penalty. Penalty is small at BER of $1x10^{-4}$;
- However, considering potential implementation penalties, stronger FEC with higher perFEC BER limit above 1x10⁻³ should be actively considered;
- Both pre-data training and in data training have been considered in other standards, and could be considered here too.

Summary

- ✓ Technical feasibility of Nx56Gbaud alternatives for 400GbE 2km /10km are analyzed, with simulation data, in terms of
 - intrinsic & extrinsic Rx sensitivities, and aggregated power to SMF;
 - MPI tolerance PAM4' s poor tolerance to MPI should be taken seriously
 - Scalability

Modulation Generation/Detection	400GbE Scheme	Max Rx Sensitivity/Lane (@ BER 1x10-4)	Required Min Power Aggregated onto fiber (after MUX)	Tolerance to MPI	Scalability to TbE
NRZ, IM-DD (ideal ER)	8 x56 Gbps	-13.8 dBm/Lane	4.2 dBm	Excellent	??
PAM4, IM-DD (ideal ER)	4 x112 Gbps	-9.8 dBm/Lane	3.7 dBm	Very poor	??
PM-16QAM, IQ –CohRx (ER 25dB)	1x 448 Gbps	-16.6 dBm	-10.6 dBm	Good	Yes

- ✓ Link budget of 1x448Gbps PM-16QAM 400GbE 2km & 10km are estimated using simulation and testbed data;
- ✓ Considerations of component availability and DSP algorithm are provided

THANK YOU