DMT Measurement Considerations

Test & Measurement of Multilevel Signals for 400 GbE
Discrete Multi-Tone and PAM-X

Greg LeCheminant, Bernd Nebendahl, Rolf Steiner

Agilent Technologies (Keysight Technologies as of August 1)
Contributors and Supporters

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg LeCheminant</td>
<td>Agilent</td>
</tr>
<tr>
<td>Bernd Nebendahl</td>
<td>Agilent</td>
</tr>
<tr>
<td>Rolf Steiner</td>
<td>Agilent</td>
</tr>
<tr>
<td>Patricia Bower</td>
<td>Fujitsu Semiconductor</td>
</tr>
<tr>
<td>Paul Little</td>
<td>Fujitsu Semiconductor</td>
</tr>
<tr>
<td>Ian Dedic</td>
<td>Fujitsu Semiconductor</td>
</tr>
<tr>
<td>Markus Weber</td>
<td>Fujitsu Semiconductor</td>
</tr>
<tr>
<td>Tomoo Takahara</td>
<td>Fujitsu Limited</td>
</tr>
<tr>
<td>Beck Mason</td>
<td>JDSU</td>
</tr>
<tr>
<td>David Lewis</td>
<td>JDSU</td>
</tr>
<tr>
<td>Sacha Corbeil</td>
<td>JDSU</td>
</tr>
</tbody>
</table>
Principle of DMT (Recap)

- DMT (Discrete Multi-Tone) aka OFDM (Orthogonal Frequency Division Multiplex) is widely used in wireline (ADSL, VDSL, G-fast) or wireless (DAB, DVB-T, WLAN, 3GPP LTE, WiMAX, ...)
- Effective usage of impaired channels by the use of orthogonal subcarriers with individual bit and power allocation
- Test Solutions for standardized formats are available today

picture source: IEEE302.3 Norfolk interim meeting, Fujitsu presentation
DMT Test Challenge

- Complete solution includes analysis of both the receiver and the transmitter
- This presentation: **Focus on characterization of the transmitter**
- Either optical or electrical signals can be acquired using a real time scope (see example below for a typical DMT time domain signal)

Conclusion: The raw measurement in time domain yields very limited information aside from an upper-bound to the optical modulation amplitude!

Useful information is obtained through post processing the time record
DMT Test Receiver Requirements

- To receive the signals the bandwidth of the digitizer (real-time sampling scope) should be at least the Nyquist frequency of the DAC that was used to generate the DMT signal. For a 63 GS/s DAC (number from JDSU’s presentation) the bandwidth of the digitizer should be \(\geq 31.5 \text{ GHz} \)
- Scope vertical resolution equal to the resolution of the DAC generating the signals is considered to be sufficient (typically 8 bit)
- Sampling time to be able to decode \(n_{\text{Sym}} \) DMT symbols (\(n_{\text{FFT}} = \text{FFT size} \))
 \[
 t_{\text{sampling}} = \frac{1}{f_{\text{DAC}}} \cdot n_{\text{Sym}} \cdot n_{\text{FFT}}
 \]
- required number of samples
 \[
 n_{\text{sampling}} = f_{\text{ADC}} \cdot t_{\text{sampling}}
 \]

DMT signal example:
- \(n_{\text{Sym}} = 50 \)
- \(n_{\text{FFT}} = 512 \)
- \(f_{\text{DAC}} = 63 \text{ GS/s} \)
- \(t_{\text{sampling}} = 406\text{ns} \)
- \(f_{\text{ADC}} = 80\text{GS/s} \)
- \(n_{\text{sampling}} = 32480 \)
DMT Analysis Software

• Physical layer testing and analysis of DMT signals requires to know bit allocation, subcarrier allocation, FFT size, cyclic prefix, system sampling frequency, and other parameters

• Without standardization any DMT link start sequence should be excluded from physical layer testing

Because we are lacking a standard a **general purpose** DMT (OFDM) decoder is required to be able to analyze the signals
DMT Analysis fundamentals

• Resample the data to the DMT system sample frequency
• Find the FFT frames using a suitable synchronization method (for non-burst ed signals w/o preamble take advantage of cyclic prefixing of the FFT frame)
• FFT on raw waveform record, the resulting coefficients are the raw complex amplitudes of each subcarrier
• Add a linear phase (mathematically equal to adjusting the sampling phase) to correct the phase of the known pilots
• Equalize for amplitude and phase response, take advantage of the fact that the modulation is known for pilots and data subcarriers
• Extract quality metrics like EVM
• Virtually identical to methods used to analyze signals in LTE, WLAN 802.11, WiMAX 802.16
• Analysis tools already exist and require minor modification for DMT analysis
Typical results available from T&M OFDM decoders

- constellation diagram per subcarrier (SC)
- channel response (amplitude and phase from equalizer)
- received spectrum and time domain waveform
- received data stream (→ path to BER testing)
- error vector magnitude (EVM) vs. time
- EVM per SC
- ...

For physical layer testing EVM is a widely used metric also in other OFDM based standards
DMT Analysis Software Example

Example (Simulation)
- 63 GS/s system frequency
- complex FFT Size 512
- variable bit allocation
- colors encode modulation from QAM 64 (green), QAM 32 (dark blue), QAM 16 (light blue), QAM 8 (red) to QPSK (orange)
- two pilot tones (QPSK, white)
- ADC sampling frequency 80GS/s, 8 bit vertical resolution

Traces (top row)
A: constellation (all SCs)
F: received data stream
E: Data Info
G: Quality Metrics

Traces (bottom row)
H: Error Vector vs. Time
C: Error Vector vs. Frequency
B: Received Spectrum
D: Received Time Domain Signal

Note: Analysis performed using existing software analysis tools
DMT transmitter measurement conclusions

- DMT signals require different test and analysis methods compared to more common optical communications signals.
- Existing test solutions developed for similar technologies can be leveraged for DMT analysis.
- If 802.3bs employs DMT, analysis is simplified if specific test modes are allowed that minimize or do not require link training to achieve a specific transmitter state.
Extending DMT measurement process to PAM

- Physical layer testing and analysis of PAM-X signals requires knowledge of the number of signal levels, symbol rate, and possibly time domain pulse shaping if applicable.

- Oscilloscopes will evolve to provide fundamental PAM-N analysis as system and component designers along with T&M providers determine essential metrics.

- DMT analysis process configured with available custom IQ decoders allows PAM-X decoding.
PAM-X Analysis Results

Typical results available from T&M Custom IQ decoders

- channel response (amplitude and phase from equalizer)
- received spectrum and time domain waveform
- received data stream (→ path to BER testing)
- magnitude error vs. time
- SNR
- Likely provides a complementary set of measurements to those provided by sampling and real-time oscilloscopes
Example (Measurement)
- 10 GBaud symbol rate
- NRZ-OOK with no pulse shaping

Traces (top row)
A: Color coded eye diagram
B: Signal metrics and received data stream

Traces (bottom row)
C: Received signal spectrum
E: Received Time Domain Signal

Note: Using existing software tools
Conclusion

- Test and solutions for DMT signals are available today (and can be extended to PAM-X)
- Support will be provided to the standard to ensure testability of the signals.