The case for a 4 Lane 400Gb/s SMF PMD

Gary Nicholl, Mark Nowell - Cisco Jeff Maki - Juniper Ram Rao, Riu Hirai - Oclaro Brian Welch - Luxtera Keith Conroy - MultiPhy Vipul Bhatt, Sudeep Bhoja - Inphi Bharat Tailor – Semtech Vasudevan Parthasarathy - Broadcom

IEEE P802.3bs 400 Gb/s Ethernet Task Force September 8-10, Ottawa, Canada

Supporters

- Matt Traverso Cisco Systems
- Marco Mazinni Cisco Systems
- Neal Neslusan MultiPhy
- William Bliss Broadcom
- David Brown Semtech
- Ian Dedic Fujitsu
- Patricia Bower Fujitsu
- Brian Teipen ADVA
- Winston Way NeoPhotonics
- Carl Paquet Teraxion
- Beck Mason JDSU
- David Lewis JDSU
- Matt Brown AppliedMicro
- Ed Ulrichs Source Photonics
- Tom Issenhuth Microsoft
- Brad Booth Microsoft

- Thananya Baldwin Ixia
- Jerry Pepper Ixia

Introduction

- The goal of this presentation is to build consensus around a 4 Lane optical solution(s) to address the 400GbE SMF objectives:
- Why a 4 Lane optical solution ?
 - It is what the industry / market desires
 - Growing band of evidence demonstrating technical feasibility, with a path to additional link margin as component technology matures
 - It has some longevity associated with it, and will not be immediately obsoleted

Assumptions

- This presentation is addressing the optical interface only
- The optical and electrical lane rates do not need to be coupled (nicholl_3bs_01_0714.pdf)
 - MLD (Multi Lane Distribution) was introduced in 802.3ba with the recognition that the initial optical and electrical lane rates/widths were likely to be different, and evolve on different timelines
 - 400Gb/s Ethernet architecture is expected to be also based on MLD (gustlin_3bs_02_0714.pdf)
 - Historically for the introduction of a new higher data rate in the industry, the optical and electrical lane rates have always been different (with optical > electrical)

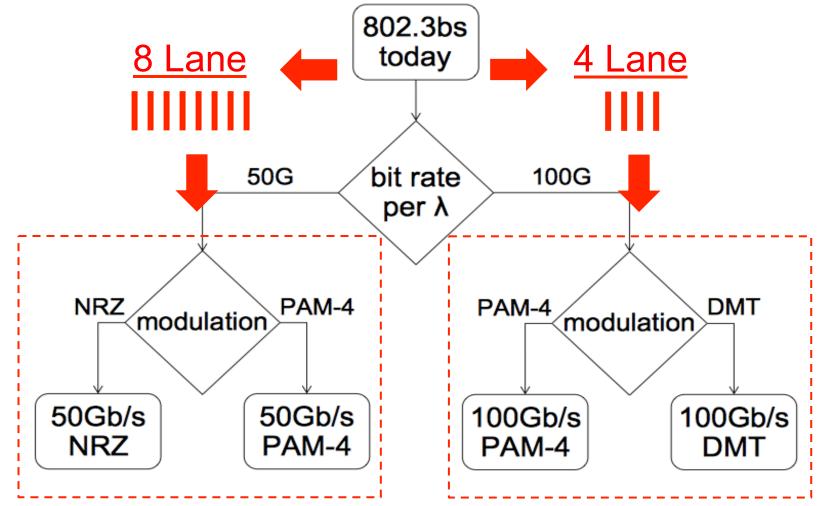
802.3bs 400GbE Objectives

Project Objectives

- Support a MAC data rate of 400 Gb/s
- Support a BER of better than or equal to 10⁻¹³ at the MAC/PLS service interface (or the frame loss ratio equivalent)
- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current Ethernet standard
- Provide appropriate support for OTN
- Specify optional Energy Efficient Ethernet (EEE) capability for 400 Gb/s PHYs
- Support optional 400 Gb/s Attachment Unit Interfaces for chip-to-chip and chip-to-module applications
- · Provide physical layer specifications which support link distances of:
 - At least 100 m over MMF
 - At least 500 m over SMF
 - At least 2 km over SMF
 - At least 10 km over SMF

IEEE P802.3bs 400GbE Task Force

Approved by IEEE 802.3 WG, 20-Mar-2014


Page 1

Source: Objectives_14_0320.pdf

This presentation focuses on the 400Gb/s SMF objectives only

802.3bs 400Gb/s SMF PMD Decision Tree

Source: cole_3bs_01a_0514

Lane Decision Concerns/Considerations

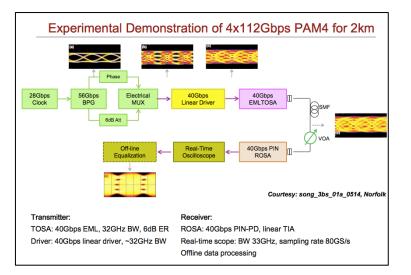
- If the TF chooses an 8 Lane 400GbE solution, the risk is that it may be immediately obsolete (or at least have a very limited lifespan)
- If the TF chooses a 4 Lane 400GbE solution, the risk is that it may miss the initial market need (i.e. if the schedule gets pushed out)
- It is clear that no matter what decision we make in the 802.3bs TF that 4 Lane 400GbE solutions will happen, so a vote for an 8 Lane 400GbE solution is a vote for a two phase (generation) approach:
 - what is the lifespan of the 8 lane 400GbE solution ?
 - there will be no optical interoperability between an 8 lane 400Gbe solution and a future 4 lane 400GbE solution (interface proliferation)

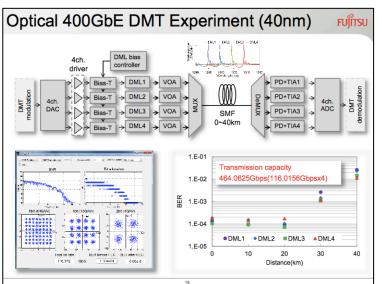
Optical Solutions – A Historical Perspective

Data Rate	16 Lane	10 Lane	8 Lane	4 Lane	2 Lane	1 Lane
1G						1GE-LR 1GE-SR
10G		OC192-VSR		10GE-LX4		OC192-SR 10GE-LR
40G				40GE-SR4 40GE-LR4 40GE-ER4	40GE-BiDi	OC-768 SR 40GE-FR <i>40GE-PAM4 ?</i>
100G		100GE-SR10 100GE-"LR 10"		100GE-SR4 100GE-LR4 100GE-ER4 100GE-CWDM4 100GE-CLR4	100GE-nR2 ?	100GE-LR ?
400G	?	?	?	?	?	?
Red: Short lifespan. Italics : Trend for next gen interfaces.						

Limited eco-system support for solutions > 4 optical lanes

System benefits of a 4 Lane 400GbE solution

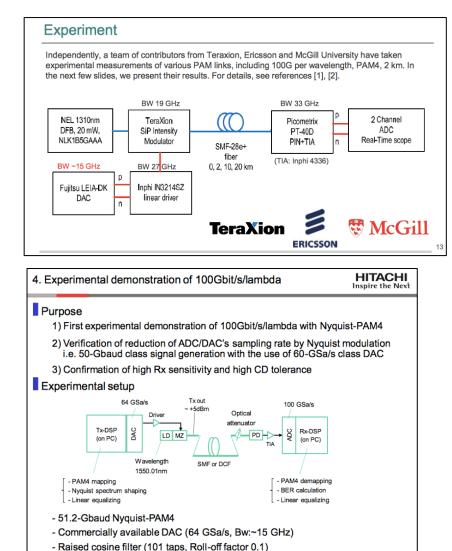

- Cost
 - historically fewer lanes has always led to lower cost
 - potential for CWDM (leveraging 100GE experience/trend)
- Forward compatibility and Interface longevity
 - minimizes interface churn (and associated eco-system cost)
 - up to 3x gens of electrical interface evolution before requiring inverse mux in module, and with full optical interop between generations (maki_3bs_01a_0514.pdf)
- Downward compatibility with lower rate four lane based solutions
 - e.g. could run in 4x25G mode to support 100GbE
- Breakout
 - enables high density 100GbE solutions in the future with 4x100G breakout


802.3bs TF Contributions on 4 Lane solutions

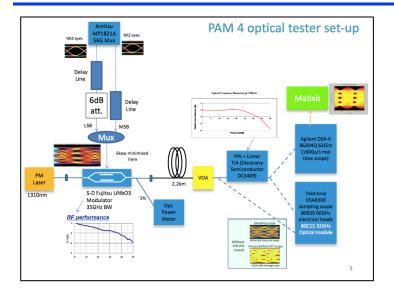
Meeting	Contributions related to 4 Lane optical solution
Norfolk, May 2014.	nicholl_3bs_01_0514.pdf, welch_3bs_01_0514.pdf, bhoja_3bs_01_0514.pdf, hirai_3bs_01_0514.pdf, lewis_3bs_01_0514.pdf, song_3bs_01a_0514.pdf, isono_3bs_01_0514.pdf, tanaka_3bs_01_0514.pdf, way_3bs_01a_0514.pdf,
San Diego, July 2014.	welch_3bs_01b_0714.pdf, stassar_3bs_01_0714.pdf, lewis_3bs_01_0714.pdf, dedic_3bs_01a_0714.pdf, zhu_3bs_01_0714.pdf, tanaka_3bs_01a_0714.pdf, bhatt_3bs_01a_0714.pdf, sone_3bs_01_0714.pdf, lecheminant_3bs_01_0714.pdf,

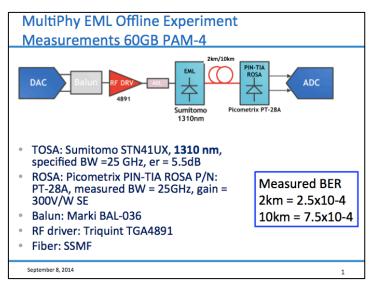
- Significant and broad industry activity around 4 Lane 400GbE optical solutions
- Multiple demonstrations showing technical feasibility and with multiple different technical approaches

- There is a growing band of evidence building in support of technical feasibility for a 4 Lane 400GbE SMF PMD(s):
 - Link budget analysis / simulation
 - Link budget experimental verification
 - Serdes technology from multiple chip suppliers
 - Low latency FEC options
 - Low power ADC/DACs becoming available

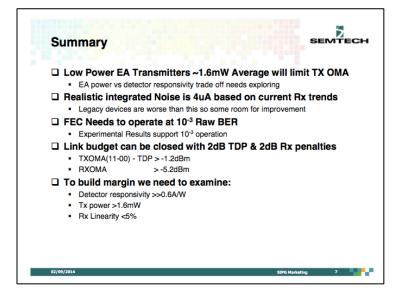


- stassar_3bs_01_0714.pdf
- experimental demo of 56Gbaud PAM4 for 2km
- Some open questions on manufacturing margins for some optical parameters


- dedic_3bs_01a_0714.pdf
- experimental demonstration of 4 Lambda 400Gb/s using DMT
- 0-40km.


7

- bhatt_3bs_01a_0714.pdf
- experimental measurements on 56Gbaud PAM4 over 2km
- reconciled Inphi link model with experimental measurements


- hirai_3bs_01a_0714.pdf
- Experimentally verified 2-km
 SMF transmission using
 56Gbaud Nyquist PAM-4

- mazzini_01a_0814_smf.pdf
- experimental verification of 56GBaud PAM4 over 2km of SMF
- non optimum lab setup
- measured Rx sensitivity in ball park of multiple link budget analysis

- conroy_3bs_01_0914
- experimental measurements of 60Gbaud PAM-4 over 2km and 10km of SMF, based on MLSE
- based on off-the-shelf components (non-optimum)
- results well within capabilities of low latency FEC solutions.

- tipper_3bs_0914.pdf
- component perspective on 56Gaud PAM-4
- Link budget can be closed with current technology
- additional margin possible as component technology matures

Summary

- Historical precedent in Ethernet for 4 lane solutions, with a tendency towards single lane as technology matures.
- Clear preference for a 4 Lane solution for a 400GbE SMF PMD(s).
- Growing evidence that such a 4 lane 400GbE solution is technically feasible with today's technology, and with a path to additional link margin as component technology matures
- A 4 Lane 400GbE SMF PMD solution will have some longevity, and will not be immediately obsoleted
- Next step Build consensus towards a baseline presentation(s) for November.

Thank You