

Technology comparison matrix for duplex SMF PMDs

Yoshiaki Sone NTT

IEEE802.3bs 400 Gb/s Ethernet Task Force, Ottawa, September 2014.

Motivation

Propose a baseline criteria of the technology selection for 400GE SMF PMDs considering possible technology advances.

Previous presentation (recap.) (<u>sone_3bs_01_0714</u>)

Raised a question about a comparison using test equipment that would not be implemented in a commercial transceiver.

Two main topics of this presentation

Transmission experiment results

Compare PAM4 and DMT on the same condition using DAC and ADC that can be implemented in a transceiver in a few years.

Comparison matrix and investigation items

- Make a comparison matrix of PAM4 and DMT considering performance, cost , size (power consumption)
- Call for cooperation to complete our half-completed matrix. <u>We need some data from</u> participants associated with commercial production.

Experimental configuration must be realistic; i.e. can be implemented as commercial transceiver. PAM4 and DMT evaluated under the same condition by changing the following characteristics.

- (1) Analog bandwidth of Tx optics
- (2) Bitrate/ λ (assumption for the number of lanes)
- (3) The number of equalizer taps (only for PAM4)

Low end							
	LSI(Tx)	Optics(Tx)		Ор	tics(Rx)	LSI(R	x)
	DAC	Laser + Mod.		Detector	TIA	ADC	Equalizer
	DAC BW = 15 GHz	Common DML for 100GE			Narrow band	ADC	No EOL
	Wide Bandwidth DAC	Wide Bandwidth DML	:	PD	Fixed Gain	BW = 18 GHz	
		Common ENAL for 100CE			Narrow band AGC	•	5 taps
		Common EIVIL for 100GE					
High ond/		Wide Bandwidth EML	Num, lanes		Wide band Fixed gain		
	Analog based Wide Bandwidth MZ	4 lane	APD	Wide band	DSO	۰	
	Signal Generations		8 lane		AGC	BW = 32 GHz	•
lab equipment							
		Configuration i	n this experiment				Only PAN

Variations of experimental configuration

We assume the DAC and ADC that can be implemented in transceivers in a few years.

Experimental configuration of PAM4 and DMT transmission

Innovative R&D by NT

- Transmission setup is common other than signal generation.
- To evaluate the dependence on bandwidth, Tx device (EML/DML) is changed.
- Commercially available evaluation board LSI (40nm) is used.

	Evalution	Modulation format FFE TAP		Tx optics	
Evaluation (1)	BER dependence on the analog	116G-DMT (for 4λ)	1Etan	DML and EML	
(slide 4)	bandwidth of Tx optics	56G-PAM4 (for 8λ)	тэгар		
		116G -DMT (for 4λ)		DML	
Evaluation (2) (slide 5)	BER dependence on Bitrate/λ	112G -PAM4 (for 4λ)	1Eton		
		58G -DMT (for 8λ)	тэгар		
		56G -PAM4 (for 8λ)			
Evaluation (3) (slide 6)	BER dependence on number of equalization taps	56G-PAM4 (for 8λ)	3tap – 25tap	DML and EML	

Evaluation result (1): Analog bandwidth dependence on BER

BER is measured for 116G-DMT and 56G-PAM4 using EML and DML with different bandwidths

• Tx analog bandwidth (EML/DML) has a small impact with the DAC and ADC we used DAC and ADC bandwidth is the bottleneck of analog bandwidth. They also limit the overall performance.

Loss budget (7%OH-FEC)> 10km SMF PMD needs 6.3dB						
	1160	G-DMT	56G-PAM4			
	EML (40G-Class)	DML (25G-Class)	EML (40G-Class)	DML (25G-Class)		
Tx output power (dBm)	0.45 10.2		1.1	10.2		
Mux loss(dB)	2.	5 ^{*1}	3.5 ^{*1}			
Demux loss(dB)	2.:	5 ^{* 1}	3.6 *1			
Min. receiver sensitivity (dBm)	-1	-3.5	-8	-8		
Loss budget(dB) No budget		8.7	2.0 Not enough for 10km	11.1		

*1 From cole_02_0814_smf

BER of 116G-DMT, 112G-PAM4, 58G-DMT, and 56G-PAM4 are evaluated

 Loss budget : "58G-DMT" ≒ "56G-PAM4" > "116G-DMT" (112G-PAM4 is not feasible for 10km transmission)

BER measurement result

	Fo	r 4λ	Fo	r 8λ	
	116G-DMT	116G-DMT 112G-PAM4		56G-PAM4	
Tx output (dBm)		10			
Mux loss (db)	2.	5	3.5		
Demux loss (dB)	2.5		3.6		
Min. receiver sensitivity (dBm)	-2.5	NG	-8 .5	-8	
Loss budget(dB)	7.7	NG	11.6	11.1	

We were not able to transmit 116G-PAM4 signal even with "35tap FFE plus 35tap DFE".

Loss budget (7% OH-FEC) -->10km SMF PMD needs 6.3dB

Evaluation result (3): BER dependence on FFE tap num.

BER dependence on equalization tap num. evaluated for 56G PAM4.

- 56G-PAM4 requires at least 5tap FFE.
- 15tap FFE is better (1 dB to 1.5 dB) than 5tap FFE.

Comparison of PAM4 and DMT must consider current DAC/ADC specification ^{*1}, since DAC/ADC is the performance limiter at this point. We should exclude the option of 4λ PAM4 that is not feasible with current DAC/ADC performance.

*1 The best specification of DAC/ADC we assume (among commercially available Si circuit)
 DAC: 15GHz, 64GSa/s, 8bit resolution
 ADC: 18GHz, 64GSa/s, 8bit resolution

[The condition that achieves 10km transmission with current DAC/ADC]

Modulation format	Equalizer	FEC OH		
4λ DMT (116G)	-	at least 7%		
8λ DMT (58G)	-	at least 3%		
8λ PAM4 (56G)	at least 5_tap *2	at least 3%		
4λ PAM4 (112G)	NG even with "FFE 35tap + DFE 35tap"			

*² 15tap improves more 1dB

Innovative B&D by N

Power consumption (size) winner ⇒ Not clear. <u>Need more investigations</u>				Performance (Loss budget) winner $\Rightarrow 8\lambda PAM4/ 8\lambda DMT$ (penalty is under investigation)			
Technology comparison matrix							
4λ DMT (1		4λ DMT (116G)	116G) 8λ PAM4 (56G)			8λ DMT (58G)	
_	Loss budget	\odot					
Performance	Transmission penalty	Need information					
Power consumption (size)		FFT+ 7%OH-FEC 24W(2014) 12W(2016)*		FFE15tap + 3%OH-FEC Need information		FFT+ 3%OH-FEC Need information	
Cost	Number of lanes	4 lanes		8 lanes			
good acceptable *from tanaka_400_01a_0913							
	 <u>Cost winner</u> ⇒ 4λ DMT : 25G-class DML is enough for both. The number of lanes will the main cost determiner. 						

Commonization of technologies including an extended reach interface (future generation) may expand the market potential of 1st generation PMDs. This may improve the overall cost advantage of 400GE.

The magnitude of cost advantage by technology commonization between 1st generation PMDs and future extended reach PMDs.

```
Scenario #1 > Scenario #2 > Scenario #3
```

Investigation items to complete technology comparison matrix

Innovative R&D by NT1

There are some items to investigate in order to complete the technology comparison matrix.

Cooperation would be appreciated from the parties /members associated with commercial production . \rightarrow for (1) and (3)

	Investigation items				
Performance	(1) Transmission penalty: Under investigation by technology proponents				
	(2) Potential performance improvement FEC-OH and its power consumption could be reduced by using APD to				
Power consumption					
(size)	(3) Estimation of LSI power consumption. Circuit size and power consumption for equalization in PAM4 and FFT in DMT				
Cost	(4) Extended reach technology Clarify the candidate technologies for cover future need of extended reach in order to confirm whether technology can be shared				
Potential of market expansion					

Summary

Experimental results

- DAC and ADC will limit performance considering production of transceivers for PAM4 and DMT.
- 4λ PAM4 is not feasible with current specification of DAC and DAC.

Technology comparison matrix

- Practical DAC and ADC specification is the most important condition for performance comparison.
- Showed a half-completed technology comparison matrix.

Future plans

- Complete technology comparison matrix by filling in the missing parts by clarifying the following items.
 - Performance improvement achieved by using APD
 - Candidate technology for extended reach interface
 - Transmission penalty and power consumption

 \rightarrow We need the cooperation by members associated with commercial production.