

Test equipment considerations for 400G early implementations Paul Brooks IEEE P802.3bs 400 Gb/s Ethernet Task Force January 2015 Atlanta

Supporters

- Dave Lewis JDSU
- Sacha Corbell JDSU
- Mark Gustlin Xilinx
- David Estes Spirent
- Ed Nakamoto Spirent

Role of test equipment in standards

- Physical Layer
 - Classic high performance oscilloscopes, VNAs, BERTs
 - Performance influenced by standards
 - Photonic and electrical layer
 - Some very 'challenging'
 - i.e. SRS 10G was difficult, 100G no 'point' solution (no one box – easy to use & repeatable across ecosystem)
- Protocol + standardized I/F
 - Strongly impacted by standards
 - Covers L2...L7
 - Form factor impact but can be adapted
 - i.e. CFP => CF2, CFP2 => CFP4 all possible
 - But CFP2 => CFP/CXP not practical

A 'typical' protocol aware 400G test set – 1st generation

- Should support appropriate module form factor
 - I/O electrical I/F + MDIO etc
- Protocol aware
 - PCS
 - FEC
 - Ethernet
 - OTN applications

Key applications

- Physical layer
 - Performance, margin and diagnostics
 - Often together with high performance oscilloscope etc
- PCS/FEC
 - Validate PCS layer and alarm + error behavior
- Ethernet/IP
 - Full line rate traffic rate
 - QoS parameters measured and validated
- Advanced transponder test and validation
 - Validate key transponder parameters (many related to IEEE standards)
 - Skew tolerance
 - Seen as critical with more complex transponders (i.e. more than just EO and OE converters)
 - 1st generation CFP & gearbox
 - Edge cases (glitches, service disruption, marginal I/O)

Challenges – FPGA impact

- Protocol aware test equipment is usually based on high end FPGAs
 - Time to market
 - Flexibility
 - Address future protocols and emerging standards
- So products 'gated' by FPGA
 - I/O speed (and performance)
 - Size (FEC, PCS, Logic)
- Expectation is to have 'real' test equipment ready ~18 months before standard.

Challenges – FPGA I/O

I/O

- Current generation FPGA based around 28G NRZ I/O
- PAM-4 etc will need external 'gearbox' in the first generation equipment
 - Can limit functionality & delay time to market
 - Skew tolerance (dynamic skew)
 - Jitter (SRS)
- 1st generation 100G used 'conservative/mature' 10G I/O and yet industry still had a lot of painful issues
- 25G technology is still emerging 1st/2nd generation parts

Challenges – FPGA impact

FEC

- FEC take up a lot of area in an FPGA
 - Langhammer_3bs_01_1114.pdf (order of magnitude greater)
 - And we need area for test functions (typical T&M IP can be x2 great in area than normal functional PCS/MAC
- => RS is the preferred FEC (over BCH) and must be of reasonable complexity & gain
- PCS/MAC
 - No major concerns proposals all seem within capabilities of current generation FPGAs

Summary of Key issues

I/O

- Anything other than 16 x 25/28G NRZ needs external 'gearbox'
- Gates test equipment availability (and performance)
- Limits test coverage
- good to have 'performance gap'
 - i.e. test equipment I/O should be at least x2 better (lower jitter, ISI, skew, symmetry)
- FEC
 - Anything other than RS has a significant impact in FPGA area
- SRS
 - Difficult at 10G NRZ
 - Cohort correlation
 - Calibration & reference receivers
 - No 'canned' solution at 25G NRZ
 - Is it really viable as a 'standard test' for the future?

