Summary of NRZ CDAUI proposals

Piers Dawe Tom Palkert Jeff Twombly Haoli Qian Mellanox Technologies MoSys Credo Semiconductor Credo Semiconductor

Contributors

Scott Irwin Mike Dudek Ali Ghiasi MoSys

QLogic

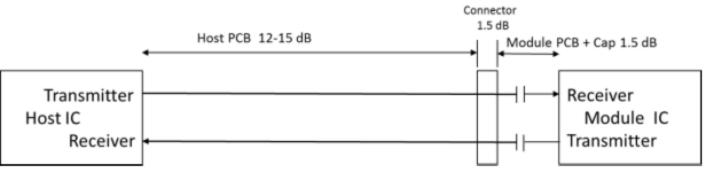
Ghiasi Quantum LLC

Introduction

- Builds on "50Gb/s Modulation Proposal", options 1 (and 2)
 - <u>http://ieee802.org/3/bs/public/14_11/goergen_3bs_03a_1114.pdf</u>
- Addresses project objective
 - "Support optional 400 Gb/s Attachment Unit Interfaces for chip-to-chip and chip-to-module applications"
- Chip-to-module CDAUI-8
 - Detailed baseline proposal in the style of an annex at <u>http://ieee802.org/3/bs/public/adhoc/elect/14_1204/palkert_01a_1214_elect.pdf</u>
 - updated to <u>http://ieee802.org/3/bs/public/15_01/palkert_3bs_01_0115.pdf</u> at this meeting
- Chip-to-chip CDAUI-8
 - Detailed baseline proposal in the style of an annex at <u>http://ieee802.org/3/bs/public/adhoc/elect/14_1218/palkert_02_1214_elect.pdf</u>
 - updated to <u>http://ieee802.org/3/bs/public/15_01/palkert_3bs_02_0115.pdf</u> at this meeting
- Both NRZ, both assume 100GBASE-KR4-strength FEC: Clause 91, RS(528,514)

802.3bs Jan 2015 Atlanta

Summary of NRZ CDAUI proposals

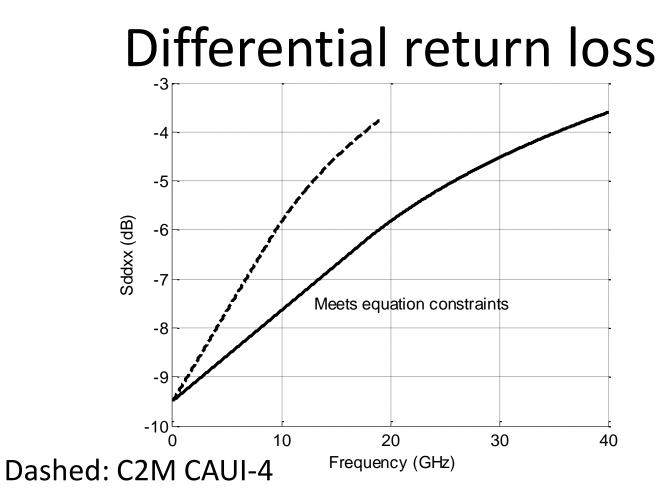

Motivation

- At each new speed, we introduce something new:
 - 10G lanes: 64B/66B coding, better connectors...
 - 25G lanes: Equalizing reference receiver, better connectors...
- But we end up finding that PAM2 NRZ still works
 - It's well understood
 - It's simple
 - Tolerant to ILD and crosstalk
 - In our estimation, it's lower power than PAM4 for both host and module
 - See http://ieee802.org/3/bs/public/15_01/qian_3bs_01_0115.pdf
 - Lower power because it's simpler
- We expect the same will happen again:
 - 50G lanes: End-to-end FEC , better connectors...
 - Still PAM2 NRZ, as in associated baseline proposals

Chip-to-module CDAUI-8

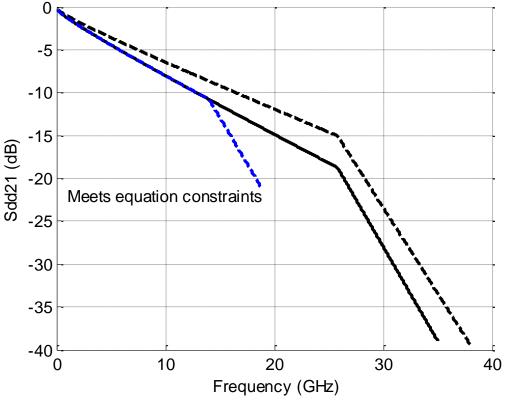
- 8 differential lanes, 51.5625 GBd, AC coupled in the module
- Specification and test methodology similar to
 - CEI-56G-VSR
 - oif2014.277.02 in http://ieee802.org/3/bs/private/oif-cei-56G-1114.zip ,
 - CEI-28G-VSR
 - http://www.oiforum.com/public/documents/OIF_CEI_03.1.pdf clause 13,
 - C2M CAUI-4 (802.3bm, Annex 83E),
 - and FC-PI-6
- Compliance points are related to the module connector
 - Compliance boards will have to be specified to higher frequencies
 - And with reduced loss if feasible
- FC-PI-6 experience shows that the channel loss can be increased beyond C2M CAUI-4 when FEC is used
- Proposal includes 1-tap DFE in the reference receiver
 - Trade off between power (DFE or not) and channel loss needs more study

Chip-to-module CDAUI-8


- Max channel loss 15 to 18 (TBD) dB
 - C2M CAUI-4 and CEI-28G-VSR have 10 dB, FC-PI-6 has 15.5 dB
- Max host loss 12 to 15 dB
 - C2M CAUI-4 and CEI-28G-VSR have 7.3 dB, FC-PI-6 has 12.8 dB
- The higher losses are the same channel losses as for C2M CAUI-4, extended to higher frequencies
 - Therefore will support the same distance with the same material
- Or for the same distance, power could be reduced with improved PCB material by removing DFE, using the lower loss limit (~15 dB)
- Spec BER 1e-6 before FEC
 - Very low BER after FEC correction (~1e-25 for random errors)

Host and module outputs

- The output eye is measured using a reference receiver with a continuous time linear equalizer (CTLE)...
 - Similar methodology to C2M CAUI-4 etc., but no need to extrapolate the bathtub curves
- And for host output, possibly a DFE in addition
 - For channels above 15 dB?
- CTLE for host output has 12 steps instead of 9
- CTLE for module output has 3 steps instead of 2, no DFE
- Host output eye height 60 mV at 1e-6
 - Compare C2M CAUI-4 with 95, 80 mV at 1e-15
 - Compare FC-PI-6 with 50 mV at 1e-6


Host and module inputs

- Module and host input specs follow host and module output specs similarly to C2M CAUI-4
- Host input can be tuned with knowledge of host channel loss or adaptively as host implementer chooses
 - Just like C2M CAUI-4 etc.
- Module input can be tuned adaptively
 - May be able to use a recommended CTLE peaking value (like C2M CAUI-4) as a starting point and/or sanity check
 - NRZ likely to be more tolerant to mis-tuning than PAM4

- Solid: Candidate for C2M CDAUI-8 (C2M CAUI-4 scaled for signalling rate)
 - Will need adjustment when feasible connector, package and compliance board improvements can be quantified

Channel differential insertion loss

- Blue: C2M CAUI-4
- Solid: Candidate for C2M CDAUI-8 (reference receiver with DFE)
- Dashed: lower power non-DFE candidate for C2M CDAUI-8

Chip-to-chip CDAUI-8

- 8 differential lanes, 51.5625 GBd, AC coupled
- Specification and test methodology similar to C2C CAUI-4 (802.3bm, Annex 83D)
- These are the same channel loss as for C2C CAUI-4, extended to higher frequencies
 - Therefore will support the same distance ("25 cm")
 - Up to one connector
- Compliance points are related to the ICs
- Same 3-tap Tx emphasis setting method as C2C CAUI-4
 - Stronger post-cursor than C2C CAUI-4, similar to 100GBASE-KR4
- Spec BER 1e-6 before FEC
 - Very low BER after FEC correction
- Channel is defined by COM
 - COM reference receiver has up to 12 dB continuous time filter (like C2C CAUI-4 and 100GBASE-KR4) and 5-tap DFE (like C2C CAUI-4)

Chip-to-chip CDAUI-8

- Receiver interference tolerance test insertion loss 31 to 32 dB
 - Compare C2C CAUI-4 with 19.5 to 20.5 dB (without FEC, 5 DFE taps)
 - Compare 100GBASE-KR4 with 35 dB (with FEC, 14 DFE taps)
- COM parameters follow Tx specs
 - Allow stronger Tx emphasis than C2C CAUI-4
 - CTLE is scaled for signalling rate
- Return loss specs are TBD
- Summary: very like C2C CAUI-4, use of FEC and stronger Tx emphasis allows more dB of loss

Conclusion

- FEC and stronger equalization allows the methodologies of C2M and C2C CAUI-4 to be extended to double the signalling rate
- Preserves the electrical channel lengths of CAUI-4 and the well-known advantages of NRZ signalling