

2 km SMF 400 Gb/s live traffic results using DMT test chips
Michael Vitic, David Lewis, Sacha Corbeil

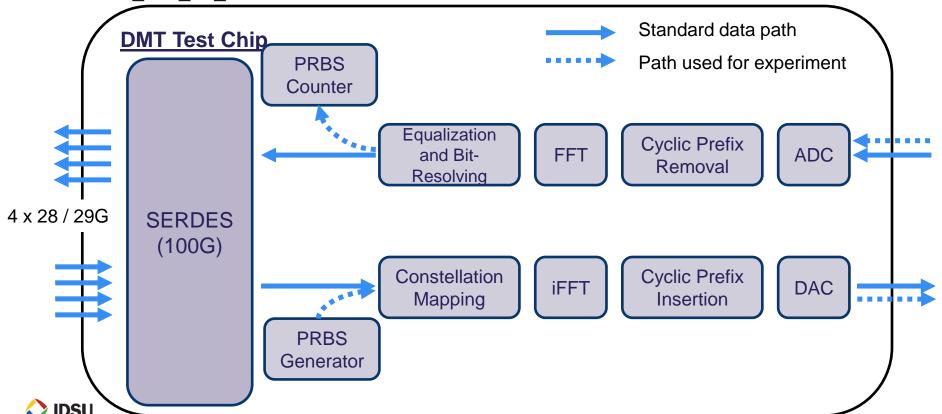
Summary

- Presenting live optical DMT transmission results showing 400Gb/s on LAN-WDM wavelengths using a single LR4 TOSA, four 28nm CMOS DMT Test-Chips, and linear receivers.
- Demonstrating the feasibility of using DMT modulation format for 400GE using 4 wavelengths each carrying 100Gb/s over 2km.
- Performance demonstrated, is inline with baseline proposal of lewis_3bs_01a_1114.

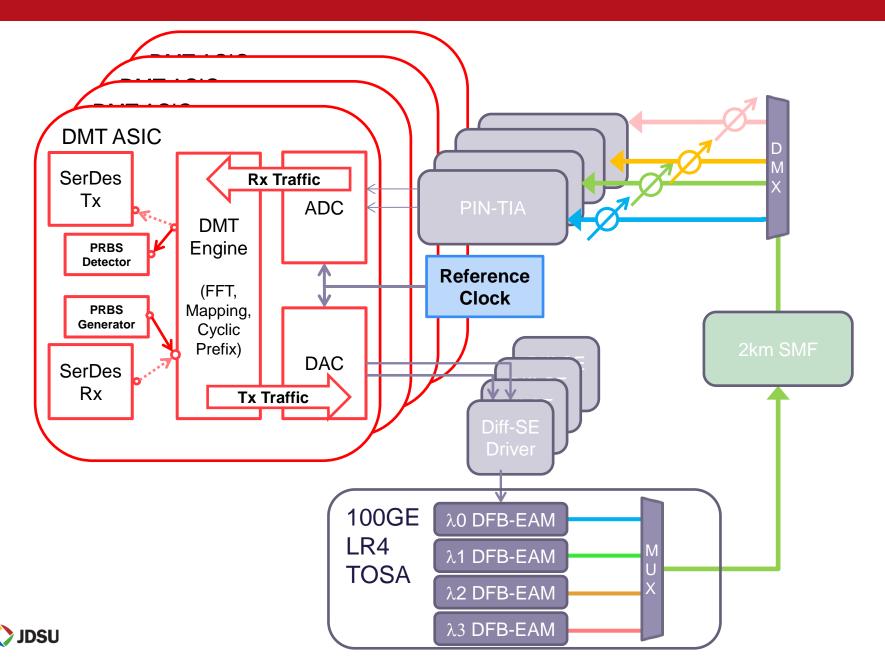
Contributors and Supporters

- David Lewis JDSU
- Michael Vitic JDSU
- Sacha Corbeil JDSU
- Beck Mason JDSU
- Ian Dedic
 Fujitsu Semiconductor Europe
- Markus Weber Fujitsu Semiconductor Europe
- Patricia Bower Fujitsu Semiconductor Europe
- Vikas Manan MACOM
- Ray Moroney MACOM
- YK Park OE Solutions
- Moonsoo Park OE Solutions
- Bongsin Kwark OE Solutions
- Abhay Joshi
 Discovery Semiconductor

100 Gb/s Parameter Table

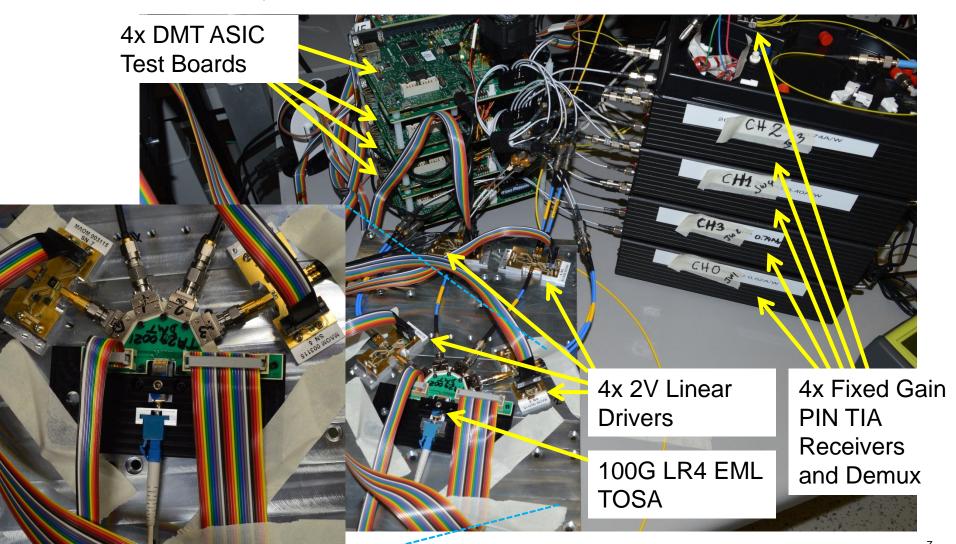

- A DMT test-chip incorporating the following features was used:
 - D/A and A/D sampling rates tied to bit-rate: simplifies DSP clocking architecture
 - SerDes of 4 x 28G lanes
 - DMT Engine mapping bits to QAM constellations on 256 subcarriers
 - DMT-Symbol frame-synchronization using 2 dedicated adjacent subcarrier tones
 - Implementation of CP of length 16, 32, 48 or 64 samples

Parameter	Value	
Data Rate	116 Gb/s	
Sampling Rate	58 GS/s	
Cyclic Prefix	16 samples	
Clipping Ratio	3.16	
DAC Bandwidth	14.5 GHz	
ADC Bandwidth	19.3 GHz	
FEC Overhead	12.5%	
FEC input BER for output BER = 1e-15	3.3e-3 (9K BCH)	



DMT Test Chip Architecture

- For this demonstration, four test-chips were configured in loopback operation, using the internal PRBS Generator / Counter.
- Frame-synchronization successfully achieved, using 2 dedicated adjacent subcarriers at 7.36 and 7.47GHz for this purpose.
- Link-negotiation was performed with external software control, for bit and power allocation and subcarrier equalization. Details in lewis_3bs_01a_1114
- This functionality to be moved to on-chip firmware in future. Details to be provided in corbeil 3bs 01 0115



400GE DMT Traffic Configuration with Quad EML Transmitter

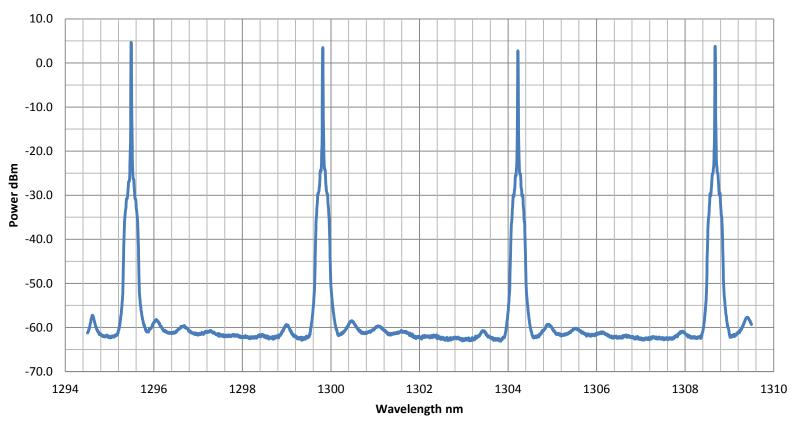
400G DMT Test Bed

- Picture below shows the 400G DMT test bed.
- Picture on left, zooms in on the 100G LR4 TOSA

Optical Component: Tx

- Transmitter was an off the shelf 100G LR4 TOSA with integrated WDM and four EMLs
 - Typical bandwidth on all 4 Channels 26GHz
 - Using a MACOM differential input single-ended output linear driver, THD <5%.
 - Driver contains integrated broadband bias-tee for EAM reverse bias
 - EML driven to optimize RIN and DMT performance

СН	λnm	RIN dB/Hz	Pout	Vmod	ER@2GHz
0	1295.5	-146.5	+4.9dBm	2.1Vpp	7.3dB
1	1299.8	-144.0	+3.8dBm	2.0Vpp	8.5dB
2	1304.2	-145.5	+2.8dBm	2.1Vpp	10dB
3	1308.7	-146.8	+3.8dBm	2.0Vpp	8.5dB


Optical Component: Tx Modulated Wavelength

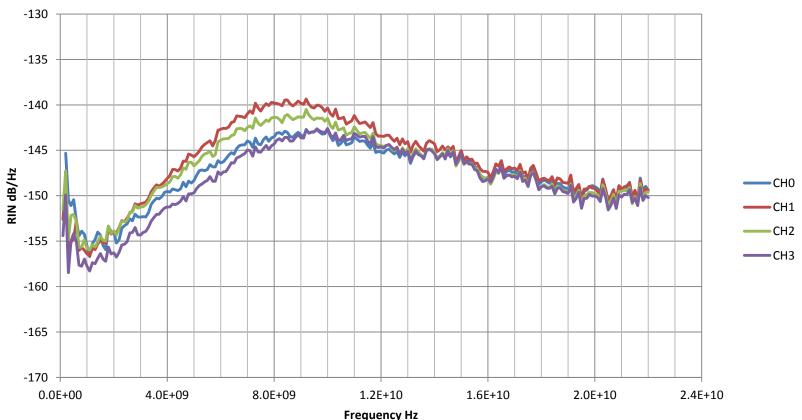
Peak Wavelengths

CH0: 1295.550nm
 CH1: 1299.870nm

• CH2: 1304.280nm CH3: 1308.735nm

100GE LR4 EML TOSA Modulated spectra

Optical Component: Tx RIN


Integrated RIN:

CH0: -146.5dB/Hz
 CH1: -144dB/Hz

CH2: -145.5dB/Hz
 CH3: -146.8dB/Hz

 0.75 to 1.0dB improvement in performance could be attained with 5dB lower RIN peak and integrated RIN.

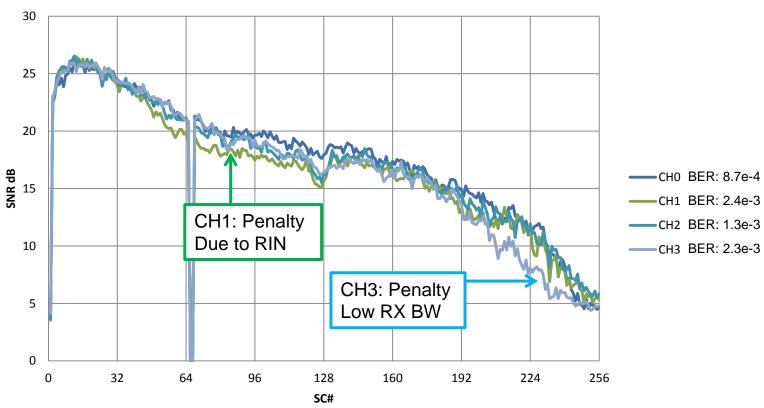
RIN vs Frequency 100G LR4 EML TOSA

Optical Component: Rx

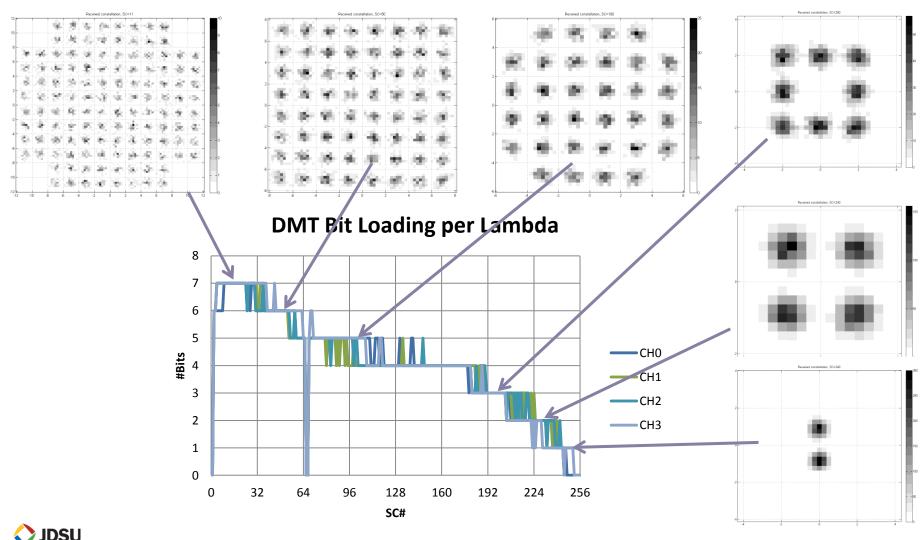
Prior to the receiver was a Cube Optics LAN-WDM 4 Ch. demux

СН	WL	IL.
0	1295.56nm	1.0dB
1	1300.05nm	0.9dB
2	1304.58nm	0.9dB
3	1309.14nm	0.6dB

- Receivers consisted of Discovery R409 linear differential PIN-TIA, fixed gain, where one of the 4 receivers was of reduced bandwidth and also had higher noise.
- Since the transimpedance gain is fixed at ~500Ω each receiver's input power is optimized using an optical attenuator.

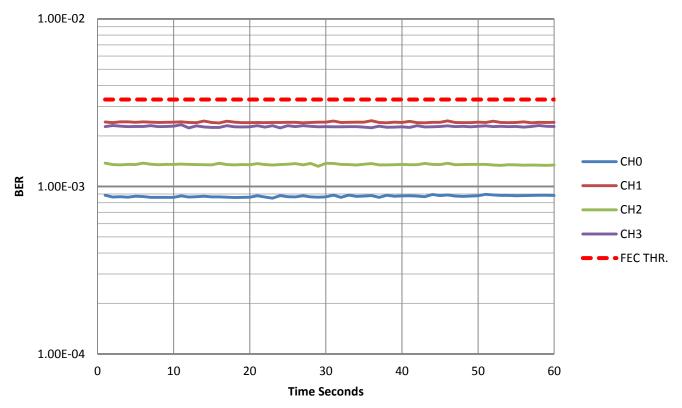

СН	Resp.	BW	IRN	Att dB	Pin dBm
0	0.52A/W	29.0GHz	23pA/√Hz	2.0dB	+0.95dB
1	0.4A/W	29.5GHz	23pA/√Hz	1.0dB	+1.50dB
2	0.74A/W	30.0GHz	23pA/√Hz	3.0dB	-1.90dB
3	0.72A/W	23.5GHz	30pA/√Hz	4.0dB	-1.20dB

SNR vs Subcarrier


- Channel with highest RIN shows lowest SNR near its RIN peak
- Channel with low bandwidth receiver shows degradation in SNR at highest SC#

DMT SNR vs SC# per Lambda

Bit Loading vs Subcarrier#



BER RESULTS

- Optical Traffic was run continuously over 2km of fiber
- Traffic (PRBS-31) is stable over 60 seconds.
 - BER integrated over 1 second.

Conclusion

- First successful live traffic demonstration of 400 Gb/s using DMT protocol and a 100G LR4 EML TOSA over 2km of fiber.
- Experiments were run using 4 functional DMT transceiver chip sets in 28nm CMOS
- Measured BER over 2km SMF-28 is stable and below the BCH FEC threshold
- Initial results limited by the capability of the available optical components
- These results confirm the feasibility of using DMT modulation format for 400GE transmission using 4 LAN-WDM wavelengths each carrying 100Gb/s.

