Parametric Test and Measurement for 400 Gb/s

Greg D. Le Cheminant

Keysight Technologies

greg_lecheminant@keysight.com

Big ticket items being addressed

- Page 9: C2C CDAUI-8: Test data from industry products
 - Discussion of definitions and process for PAM4 measurements
 - Requested within ad-hoc calls
- Page 11: C2M CDAUI-8: test data
 - Test procedures including PAM4
- Page 17, 21: 500m and 2 km SMF PMD:
 - The PAM4 discussion from C2C leverages directly into any PAM4 optical discussion as the measurement tools are applicable to optical or electrical signals
- Page 13, 14, 16, 19, 20: 10km, 2km and 500m SMF PMD:
 - 50 Gb/s NRZ optical reference receiver
 - Not listed directly in the big ticket slide

Significant progress for PAM4 in T&M since clause 94: What is available today?

- Multiple vendors providing waveform analysis solutions
- Multiple vendors providing pattern generation
- Early solutions coming out for error detection

PAM4 Pattern Generation at 25 Gbaud

- Using standard NRZ pattern generators
 - Multiplexing two NRZ streams to generate one PAM4 data stream (at the same baud rate)
 - Combiner kits ease multiplexing process
- Using arbitrary waveform generators
 - Direct generation of PAM4 signals (65 GSa/s->32 Gbaud)
 - Direct generation of stress signals
 - Customized equalization

Image from Tektronix

PAM4 Error detection

- Use multiple NRZ error detectors
 - Divide signals and send to each error detector
 - Example: Set three thresholds (unique level for each error detector)
 - Post processing software required to sort out the fact that three decisions are made on each symbol
 - High sensitivity required to accommodate power division

Image from Anritsu

Implications of using FEC when making BER measurements

 Please allow disabling of FEC to allow BER measurements of the uncorrected hardware

PAM4 Waveform Analysis

- Oscilloscope vendors have, or are developing PAM4 analysis capability
- For IEEE 802.3bs, rather than extracting key parameters solely from the eye-diagram, a multi-pass approach is recommended
 - Leverage work of clause 94

Uncorrelated parameters (noise, random jitter, even-odd jitter etc.)

- Generate the JP03B clock pattern
- Perform a jitter and amplitude analysis to extract the uncorrelated signal components
- * A modified form of JP03B (JP03C?) is recommended to avoid DCD being confused with even-odd jitter in the presence of ISI (see backup slides)

Linearity and noise

- Generate the linearity pattern (long runs at each signal level)
- Extract Level 'N', Level N 'rms', linearity, and other parameters that assess the integrity of the PAM levels
- Characterized in the absence of inter-symbol interference
 - Like 'OMA' in optical system, assumes the link budget deals with ISI elsewhere

Eye opening

- With uncorrelated and linearity parameters determined, characterize the eye openings (eye height, eye width)
- PAM4 waveform more sensitive than NRZ to any scope frequency response aberrations
- CTLE etc. can be applied
- Advanced signal processing issues (e.g. virtual CTLE)
 - Pattern Lock required. Long patterns prohibitive (No PRBS31. Consider SSPR type patterns <u>http://www.ieee802.org/3/bs/public/14_07/a</u> nslow_3bs_03_0714.pdf)
 - Transforms do not correctly process uncorrelated signal components (effectively removed, similar to if trace averaging is used). But these parameters were measured in step one on clock pattern

50 Gb/s NRZ optical waveform analysis

- NRZ optical transmitters have historically been observed with an optical scope with the following characteristics:
 - Fourth order Bessel response
 - -3dBe bandwidth at 75% of the data rate
- Exists in a pattern-locked scenario (signal processing required to create the ideal response. Consider SSPR type data patterns)
- Likely to eventually be implemented without pattern length restrictions

Backup slides

JP03B vs JP03C pattern

- Add 2 bits to the 62 bit JP03B pattern
 - An extra 0 placed mid pattern and an extra 3 at the end of the patter
- Minimizes DCD being interpreted as F/2 (even-odd) jitter in the presence of ISI

Configuring PAM4 measurements and possible underlying definitions

Locate Receiver timing reference (using center eye or each eye independently, as selected) 1.

Time of Level: Eye Center

2. Locate Eve Center (EW or EH) of the eve identified in #1.

Reference - Max Eye Width of Center Eye

? Close 2. Measurement location based on ref PAM-N Analysis Setup ? Close 2. Measurement location based on ref-Eye 2/3 Height Measurement Configuration Eye 2/3 Heigh Measurement Configuration Reciever Sample Timing: Based on Center Eve Y Reciever Sample Timing: Based on Center Eve Y Eye Center Location: Maximum Eye Width Y Eye Center Location: Maximum Eye Height 1. Ref = Center Eye, Eye Height 1. Ref = Center Eye, Eye Width 10 % 🗸 10% Y A Eye Level Width: Eye Level Width: Time of Level: Eye Center Time of Level: Eye Center ? Close Measurement Configuration Signal Types Y Reciever Sample Timing: Independent Per Eye Reference - Max Eye Height, each eye is independent Y Eve Center Location: Maximum Eye Height (top eye shown here) 10 % ¥ A Eye Level Width:

Reference – Max Eve Height of Center Eve

PAM-N Analysis Setup

Configuring PAM4 measurements and possible underlying definitions

defined by setup

Report "Thickness" of each level at location defined by "Time of Level" in Setup... (Eye Center or Minimum RMS)

- Report skew of each level at location defined by "Time of Level" in Setup... (Eye Center or Minimum RMS)
- If configured for "Eye Center" of "Center Eye", all skew = 0.

Report mid-point of each EYE level as defined by settings in Setup...

- Report skew of each EYE level as defined by settings in Setup...
- If based on Max EH of Center Eye, skew of center eye = 0 (this is the reference for the other eyes)

Built-in measurements in Eye/Mask mode

•

10

1.0E-5

At Probability

Repor	t Eye Height at a location determined
by set	up>

Measurement

Based on measured data only (no extrapolation)

Eve 2/3 Height	
44.2 mV	
Measurement	Current
Eye 2/3 Height F1	44.2 mV
Measurement	Current

X	Zero Hits			
22	Zero Hits			
Eye Widths	At Probability			
Eye Opening Definition;	ye Opening Probabili	ty:		
At Probability	1.0E-5	V A		

- Report Eye Width at a location determined by setup
- Based on measured data only (no extrapolation)

Eye 2/3 Height (1.0E-5) F1

Measurement	Current	Measurement	
Eye 2/3 Width (1.0E-5)	F1	? 11.77 ps	Eye 2/3 Width (1.0E-5)

Current

? 48.0 mV

- Level Separation Mismatch Ratio (normally measured as a bit pattern rather than an eye per Clause 94)
- Ideal R_{LM} = 1 (Clause 94 Spec R_{LM} > 0.92)

F1

Current 11.77 ps